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Axion-like particles (ALPs) are pseudo-Nambu-Goldston bosons that appear in theories beyond
the standard model and are capable of converting to photons in the presence of magnetic fields.
Such interaction can have an observable effect on the gamma-ray spectrum of astrophysical targets.
We have examined about 40 hours of observations made with the ground-based MAGIC Cherenkov
telescopes in the direction of the Perseus Galaxy Cluster. The sources of VHE gamma rays present
in the cluster and object of the study are the radiogalaxy NGC1275 and the HBL object IC310.
These sources are bright in gamma rays and embedded in the cluster’s high magnetic field, making
them very good targets for this kind of study. Having not found statistical evidence for ALPs,
we exclude ALPs models with masses in the sub-eV range in line with previous results. Last, we
address the potential for gamma-ray-based instruments, both current and future, to identify ALP
signals using this analysis technique, finding that the search for wiggles in TeV gamma-ray spectra
is very unlikely to be sensitive enough for observations with IACTs.
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1. Introduction

Axions are pseudo-Nambu-Goldstone bosons that emerge after the spontaneous breaking at a
large energy scale 𝑓𝑎 of a𝑈 (1) symmetry, called Peccei-Quinn, originally introduced as a solution to
the so-called Strong-CP problem [23] and further discussed in [27, 28]. The original Peccei-Quinn
axion had a mass proportional to 𝑓𝑎 at the eV scale (visible axion) and was soon experimentally
discarded [14]. However, it was realized that axion-like particles (ALPs), similar to axions but
lighter in mass, and having a mass independent on the coupling, arise in many theories beyond the
Standard Model, from four-dimensional extensions of the Standard Model [26], to compactified
Kaluza–Klein theories [15], and especially string theories [17, 24, 29], see, e.g.[13] for a review.

In this work we search for imprints of ALPs in the observed spectrum of two active galactic
nuclei (AGNs) located in the Perseus GC: NGC 1275 and IC 310. Perseus is the brightest X-ray GC,
displaying a dense population of electrons and a strong magnetic field at its core [16, 25]. It hosts
two very bright TeV-emitting radio galaxies: NGC 1275 [5, 10–12] at its core, and the head-tail
IC 310 [7] at 0.6 deg off-center. Both targets have been extensively sampled by MAGIC producing
a wealth of scientific results especially because of their intense flaring activities. Further studies
are found on the energy density at Perseus [8, 9] and more specific on and for dark matter [3].

From the observation with MAGIC of these two sources, we aim to place stringent constraints
on the properties of ALPs, using a comprehensive model of the magnetic field and detailed statistical
analysis to search for potential spectral indications of ALP-photon interaction.

2. Data Preparation and Signal Modeling

Our study in searching for ALP signatures is based on the photon survival probability

𝑃𝑎
𝛾𝛾 = 𝑃𝛾→𝑎→𝛾 (B, 𝑚𝑎, 𝑔𝑎𝛾), (1)

defined as the probability that the photon initially emitted from the very-high-energy (VHE) gamma-
ray source is converted to ALP and converted back to photon. This probability depends on the
ALP mass 𝑚𝑎, the ALP-photon coupling 𝑔𝑎𝛾 , and the ambient magnetic field intensity B. For its
computation, we model the propagation using the gammaALPs open-source code1 [21] which also
includes the effects of the Extragalactic Background Light (EBL) and the modeling of magnetic
fields. We model the optical depth due to EBL following Ref. [19]. While for the magnetic field
of Perseus 𝐵𝑆 , specific studies can be found in Refs. [16] and [25]. A recent comparison between
magnetic field modeling in Perseus is also found in Ref. [18]. Parameters defined in gammaALPs
for the magnetic field of Perseus are taken from Ref. [6] and summarized in Table 1.

𝐵0 [ 𝑛0 𝑛2 𝑟core/𝑟core2 𝛽/𝛽2

`G cm−3 cm−3 kpc
𝐵 10 0.5 39 · 10−3 4.05 · 10−3 80 / 280 1.2 / 0.58

Table 1: The parameters used for the modeling of the Perseus magnetic field from Ref. [6].

1https://github.com/me-manu/gammaALPs
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For this study we selected the NGC 1275 data from the period of September 2016 to February
2017, corresponding to the period with highest flux from the source. The whole dataset of NGC 1275
includes ∼ 40 hrs of data [12]. IC 310 was first detected in 2009 [7], and the dataset analyzed here
includes ∼ 2 hrs of data from one flaring state observed in Nov 2012. The data were processed
with the MAGIC proprietary MARS analysis and reconstruction software [30] following the already
published analysis [7, 10, 12]. We have converted the so-called MAGIC proprietary melibea
files2 into the so-called DL3 format. DL3 (Data Level 3) is the standard format adopted by the
next-generation Cherenkov Telescope Array (CTA) consortium [4] as described in Ref. [22].

In Table 2 we report the total data used for this analysis and its division in 4 datasets, including
the number of ON, OFF and excess (EXC) events for the four datasets, as well as the significance of
the number of excess events computed, both for the individual datasets and a joined one, following
Eq. 27 of Ref. [20]. In Table 2 we report the best fit SED parameters for the intrinsic energy
spectrum, in agreement with [7, 12], which are taken to be a power law with an exponential cut-off
(EPWL) for NGC 1275:

𝜙𝑖𝑖𝑛𝑡 (𝐸 ′) = 𝜙𝑖0

(
𝐸 ′

𝐸0

)Γ𝑖

𝑒𝐸
′/𝐸𝑖

𝑘 , (2)

for each 𝑖−th dataset of NGC 1275 and a power law (PWL) for IC 310:

𝜙𝑖𝑛𝑡 (𝐸 ′) = 𝜙0

(
𝐸 ′

𝐸0

)Γ
. (3)

In both Equation 2 and Equation 3, 𝐸 ′ is the reconstructed energy, 𝜙0 is the normalization flux
computed at the energy scale 𝐸0. Γ is the photon index, and 𝐸𝑘 is the cutoff energy for the EPWL.

Target Date Duration 𝑁on 𝑁off 𝑁exc SLi&Ma
[h]

NGC 1275 1 Jan 17 2.5 6632 6703 4397 61.3
02-03 Jan ’17 2.8 4376 6060 2356 37.8
Sep ’16 - Feb ’17 36.0 28830 68943 5849 31.8

IC 310 13 Nov ’12 1.9 1469 2384 674 18.0
Sum 43.2 41307 84090 13276 63.0

Table 2: The four datasets used for the analysis. For each dataset we report the observation date, the duration
in hours, the global number of events in the ON and OFF region (𝑁on, 𝑁off respectively), and the significance
of the excess signal in the dataset SLi&Ma.

3. Statistical Framework

Our statistical analysis is based on a likelihood maximization method. We firts define a binned
likelihood as follows

L(𝑔𝑎𝛾 , 𝑚𝑎, ` |D) =
∏
𝑖,𝑘

L𝑖,𝑘 (𝑔𝑎𝛾 , 𝑚𝑎, `𝑖 |𝐷𝑖,𝑘) (4)

2melibea files contain reconstructed stereo events information such as estimated energy, direction, and a classification
parameter called hadroness ℎ related to the likelihood of being a gamma-like event (ℎ → 0 for gamma-like candidates).
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Target Spectrum Γ Φ0/10−10 𝐸𝑘

[cm−2s−1TeV−1] TeV
NGC 1275 EPWL −2.31 ± 0.06 12.2 ± 1.0 0.72 ± 0.11

EPWL −1.79 ± 0.14 11.4 ± 2.1 0.29 ± 0.04
EPWL −2.54 ± 0.13 1.1 ± 0.2 0.5 ± 0.12

IC 310 PWL −1.86 ± 0.04 1.8 ± 0.1 –

Table 3: The spectral features (assuming no ALP) for the 4 datasets considered in this study. EPWL stands
for exponential cut-off power law (see Equation 2), while PWL for power-law (see Equation 3).

with the nuisance parameters `𝑖 for the i-th sample in our dataset and 𝐷𝑖,𝑘 = (𝑁 𝑖,𝑘
on , 𝑁

𝑖,𝑘

off ), the
number of ON and OFF events observed in the 𝑘-th energy bin from the 𝑖-th sample (see Table 2).
The likelihood is by definition the probability of observing the data 𝐷𝑖,𝑘 assuming the model
parameters 𝑔𝑎𝛾 and 𝑚𝑎 to be true:

L𝑖,𝑘 = P
(
𝑁

𝑖,𝑘
on | 𝑠𝑖,𝑘 + 𝛼𝑏𝑖,𝑘

)
× P

(
𝑁

𝑖,𝑘

off | 𝑏𝑖,𝑘
)

(5)

with P being the Poisson probability mass function for observing 𝑛 counts with expected count
rate 𝑟 : P(𝑛; 𝑟) = 𝑟𝑛𝑒−𝑟/𝑛!. The parameter 𝛼 is the exposure ratio of the ON and OFF region (see
section 2), while 𝑏𝑖,𝑘 and 𝑠𝑖,𝑘 are the expected background and signal counts in the energy bin Δ𝐸𝑘

in the OFF region and ON region, respectively, for the i-th sample. The latter is obtained from

𝑠𝑖,𝑘 =

∫
Δ𝐸𝑘

𝑑𝐸 𝜙𝑖𝑜𝑏𝑠 (𝐸 ; 𝑔𝑎𝛾 , 𝑚𝑎, `𝑖), (6)

with
𝜙𝑖𝑜𝑏𝑠 =

∫
𝑑𝐸 ′𝜙𝑖𝑖𝑛𝑡 (𝐸 ′; `𝑖)𝑃𝛾𝛾 (𝐸 ′) · IRF𝑖 (𝐸 |𝐸 ′), (7)

where IRF𝑖 (𝐸 |𝐸 ′) is the instrument response function for the 𝑖-th sample, and 𝑃𝛾𝛾 (𝐸 ′) = 𝑃𝑎
𝛾𝛾 (𝐸 ′)×

𝑃EBL
𝛾𝛾 (𝐸 ′) is the survival probability in which both ALPs and EBL induced absorptions are taken

into account. Given the likelihood in Equation 4, the statistic S is defined as:

S(𝑔𝑎𝛾 , 𝑚𝑎) = −2Δ lnL = −2 ln
L(𝑔𝑎𝛾 , 𝑚𝑎, ˆ̀, B̂|D)

L̂
, (8)

where L̂ is the maximum value of the likelihood over the parameter space, while ˆ̀ and B̂ are
obtained from profiling the likelihood, i.e. by fixing them to the values that maximize the likelihood
for a given coupling 𝑔𝑎𝛾 and mass 𝑚𝑎. Lastly, to get exact coverage of the test statistic, we compute
the distribution of S(𝑔𝑎𝛾 , 𝑚𝑎) for each of the 154 points considered in our analysis in the ALP
parameter space (𝑔𝑎𝛾 , 𝑚𝑎).

4. Results and Conclusions

We analyzed the 43 hrs of high-energy gamma-ray data coming from the direction of the
Perseus galaxy cluster (see Table 2 and Table 3 ) in search for spectral irregularities induced by
ALP in the sub-`eV mass range. Using a maximum likelihood analysis, as discussed in details
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in section 3, we have tested the alternative hypothesis (presence of ALP) on 154 points regularly
selected in the ALP parameter space. For each model we have computed the 𝑃𝑎

𝛾𝛾 . The test statistic,
once calibrated, does not provide a significant detection, which allowed us to compute 99% CL
exclusion upper limits in the ALP parameter space. The excluded area match those by earlier results
and to date these results offer the strongest constraints on ALP masses in the range of 40 − 90 neV,
with the greatest sensitivity for ALP masses of 𝑚𝑎 = 50 neV, reaching the photon-ALP coupling
down to 𝑔𝑎𝛾 = 2.0 × 10−12 GeV−1. Similar limits obtained with H.E.S.S. [2] or forecast with
CTA [1] are also sensitive to lower ALP masses around 10 neV. We decided to further investigate
this discrepancy. In particular, the results from the CTA were obtained by extrapolating a portion
of the NGC 1275 dataset that we are using to generate this result: Ref. [1] consider that during the
lifetime of CTA Perseus could be observed for 260 hrs, during which NGC 1275 would be in the
baseline emission state for 250 hrs and in flaring state for 10 hrs. The authors model the baseline
and flaring state with the values measured by MAGIC and reported here [7, 12]. We therefore adopt
the same approach and recompute our limits as if we had taken 250 hrs of baseline and 10 hrs of
flaring states. As done in [1], we neglect the post-flaring state of NGC 1275 and the emission from
IC 310. To do so we are using the previously defined datasets where the observations are convoluted
with the IRFs, ultimately giving us the predicted number of counts. To extend our flaring state and
baseline to 10 hrs and 252 hrs respectively, we simulated with gammapy ∼ 4 and ∼ 7 times more
total predicted counts in comparison to the original datasets of the flaring state and baseline used
in the main part of this article. We observe that adding significantly more data allows to become
sensitive to the parameter region with ALP masses around 1 − 10 neV, in agreement with Ref. [1].
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