Indirect dark matter search beyond the unitarity limit with VERITAS

Conor McGratha,* on behalf of the VERITAS Collaboration

aSchool of Physics, University College Dublin, Dublin, Ireland

E-mail: conor.mcgrath2@ucdconnect.ie

In the current cosmological paradigm, Dark Matter (DM) constitutes a large portion (about 27\%) of the mass and energy content of the Universe. One DM candidate, the Weakly Interacting Massive Particle (WIMP), can potentially have a mass in the range from 50 GeV to greater than 10 TeV. Self-annihilation and/or decay of WIMPs may produce various secondary particles, producing very-high-energy gamma rays (VHE; above 100 GeV). The signature of the WIMP signal has been searched with state-of-art observatories, but it has not been successful. This lack of success proposes a new parameter range, ultra-heavy DM (UHDM). In this talk, I will summarize the status of the WIMP search, focusing on the Very Energetic Radiation Imaging Telescope Array System (VERITAS) result, and explore the feasibility of detecting the annihilation signature for UHDM with current and future VHE gamma-ray observatories. Finally, I will present the result of the UHDM search with VERITAS.
All results are shown in the refereed publication. Please cite this as [1]

1. Acknowledgments

This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, and by the Helmholtz Association in Germany. This research used resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy’s Office of Science, and resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument.

References

Ultra heavy dark matter with VERITAS
Conor McGrath

Full Author List: VERITAS Collaboration
A. Acharyya1, C. B. Adams2, A. Archer3, P. Bangale4, J. T. Bartkoske5, P. Batista6, W. Benbow7, J. L. Christiansen8, A. J. Chromey7, A. Duerr9, M. Errando2, Q. Feng7, G. M. Foote4, L. Fortson10, A. Furniss11,12, W. Hanlon7, O. Hervet12, C. E. Hinrichs7,13, J. Hoang12, J. Holder4, Z. Hughes9, T. B. Humensky14,15, W. Jin1, M. N. Johnson12, M. Kertzman3, M. Kherlakian6, D. Kieda3, T. K. Kleiner6, N. Korzoun4, S. Kumar14, M. J. Lang16, M. Lundy17, G. Maier6, C. E. McGrath18, M. J. Millard19, C. L. Moore4, F. Moriarty16, R. Mukherjee20, S. O’Brien17,21, R. A. Ong22, N. Park23, C. Poggio6, M. Pohl24,26, E. Pueschel6, J. Quinn18, P. L. Rabinowitz26, K. Ragan17, P. T. Reynolds25, D. Ribeiro10, E. Roache7, J. L. Ryan22, I. Sadeh6, L. Saha2, M. Santander1, G. H. Sembroski28, R. Shang20, M. Splettstoesser12, A. K. Talluri10, J. V. Tucci17, V. V. Vassiliev22, A. Weinstein28, D. A. Williams12, S. L. Wong17, and J. Woo29

1Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
2Physics Department, Columbia University, New York, NY 10027, USA
3Department of Physics and Astronomy, DePauw University, Greencastle, IN 46135-0037, USA
4Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
5Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
6DESY, Platanenallee 6, 15738 Zeuthen, Germany
7Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02138, USA
8Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
9Department of Physics, Washington University, St. Louis, MO 63130, USA
10School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
11Department of Physics, California State University - East Bay, Hayward, CA 94542, USA
12Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064, USA
13Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 USA
14Department of Physics, University of Maryland, College Park, MD, USA
15NASA GSFC, Greenbelt, MD 20771, USA
16School of Natural Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
17Physics Department, McGill University, Montreal, QC H3A 2T8, Canada
18School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
19Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242, USA
20Department of Physics and Astronomy, Barnard College, Columbia University, New York, NY 10027, USA
21Arthur B. McDonald Canadian Astroparticle Physics Research Institute, 64 Bader Lane, Queen’s University, Kingston, ON Canada, K7L 3N6
22Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
23Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada
24Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
25Department of Physical Sciences, Munster Technological University, Cork, T12 P928, Ireland
26Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
27Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
28Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
29Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA