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The transport of non-thermal particles across a large-scale magnetic field in the presence of
magnetised turbulence has been a long-standing issue in high-energy astrophysics. Of particular
interest is the dependence of the parallel and perpendicular mean free paths _ ∥ and _⊥ on rigidity
R. We have revisited this important issue with a view to applications from the transport of Galactic
cosmic rays. We have run test particle simulations of cosmic ray transport in synthetic, isotropic
Kolmogorov turbulence at unprecedentedly low reduced rigidities 𝑟g/𝐿c ≃ 10−4, corresponding
to R ≃ 10 TV for a turbulent magnetic field of 𝐵rms = 4 `G and correlation length 𝐿c = 30 pc.
Extracting the (asymptotic) parallel and perpendicular mean free paths _ ∥ and _⊥, we have found
_ ∥ ∝ (𝑟g/𝐿c)1/3 as expected for a Kolmogorov turbulence spectrum. In contrast, _⊥ has a faster
dependence on 𝑟g/𝐿c for 10−2 ≲ 𝑟g/𝐿c ≲ 1, but for 𝑟g/𝐿c ≪ 10−2, also _⊥ ∝ (𝑟g/𝐿c)1/3. Our
results have important implications for the transport of Galactic cosmic rays.
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1. Introduction

Observational evidence, e.g. data secondary-to-primary ratio of cosmic-ray intensities, strongly
indicates that the transport of cosmic rays (CRs) in the Galaxy is predominantly diffusive due to
interactions between these particles and magnetic turbulence [1]. Magnetic turbulence is oftentimes
modelled as a spectrum of different plasma waves and interactions between waves and particles
are commonly described using Quasi-Linear Theory (QLT), a perturbative approach that considers
a small turbulent magnetic field 𝛿B on top of the regular background field B0. It can be shown
that theses interactions are gyro-resonant, meaning that particles with a gyroradius 𝑟g are scattered
by plasma waves with a wavenumber 𝑘 ∼ 1/𝑟g. This leads to the mean free paths parallel
and perpendicular to B0, denoted as _ ∥ and _⊥, being dependent on particle rigidity 1 and the
turbulence power spectrum. For ease of discussion, we introduce the reduced rigidity 𝑟g/𝐿c where
𝑟g = 𝑝𝑐/(𝑒𝐵rms) = R/𝐵rms is the relativistic gyroradius, 𝐿c denotes the correlation length, 𝑝

is the momentum and 𝑒 the charge of the particle. For an isotropic 𝑘−5/3 Kolmogorov power
spectrum for instance, the simplest expectation is for the parallel and perpendicular mean free path
to scale with rigidity in the same way while the dependence on 𝛿𝐵2/𝐵2

0 should be the opposite,
_ ∥ ∝

(
𝑟g/𝐿c

)1/3 (
𝛿𝐵2/𝐵2

0
)−1 and _⊥ ∝

(
𝑟g/𝐿c

)1/3 (
𝛿𝐵2/𝐵2

0
)

[2].
Predictions of QLT for this simple isotropic Kolmogorov turbulence, however, give _ ∥ → ∞

and _ ∥ → ∞. Various modifications of QLT have been suggested to cure this problem for _ ∥ [3].
The most promising suggestions are dynamical turbulence and non-linear theories, both of which
lead to a broadening of the resonance condition and can hence lead to predictions of _ ∥ being finite.
Transport in the perpendicular direction, however, is a different matter altogether. It is believed that
it depends both on the transport of particles along field lines as well as the transport of the field lines
itself. In fact, many theories predict a rather weak falling dependence of _⊥/_ ∥ not too different
from the simple expectation mentioned above. Numerical simulations, however, show a different
scaling of _ ∥ and _⊥. While _ ∥ is in agreement with the (𝑟g/𝐿c)1/3 behaviour generically expected
for gyro-resonant interactions with Kolmogorov turbulence, the scaling of _⊥ with 𝑟g/𝐿c is faster.
In particular, _⊥/_ ∥ ∝ (𝑟g/𝐿c)Δ𝑠 with Δ𝑠 ≃ 0.2 and this behaviour had been indicated already in
many previous works [4, 5]. We also note that at the reduced rigidities where simulation results
are available, the scaling of _⊥ with (𝛿𝐵2/𝐵2

0) as indicated above is not observed either [6]. So far,
neither the scaling with rigidity nor with (𝛿𝐵2/𝐵2

0) has been understood.
We have revisited the important question on the nature of perpendicular transport with a focus

on the rigidity-dependence of _⊥ in isotropic turbulence. To this end, we have run a large suite of
numerical test-particle simulations reaching unprecedentedly low rigidities, 𝑟g/𝐿c ≃ 10−4 which
for 𝐿c = 30 pc and 𝐵rms = 4 `G corresponds to rigidities of R ∼ 10 TV. These small rigidities have
been made possible by the use of graphics processing units (GPUs) for solving the equations of
motions. We have found that the perpendicular mean free path _⊥ scales differently than the parallel
one for 10−2 ≲ 𝑟g/𝐿c ≲ 1, but for 𝑟g/𝐿c ≪ 10−2 the same rigidity-dependence is recovered.

The outline of this proceeding is as follows. In Sec. 2, we explain the preparation of an isotropic
turbulent magnetic field on a computer and describe the test particle simulations. We then discuss
briefly how diffusion coefficients can be derived from these simulation and afterwards present our

1Rigidity R is defined as the ratio of particle momentum 𝑝 and charge 𝑞, that is R ≡ 𝑝𝑐/𝑞 with the speed of light 𝑐.
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results and potential phenomenological consequences. We conclude in Sec. 4.

2. Test particle simulations in isotropic turbulence

We study perpendicular transport of CRs using test particle simulations, i.e. the back-reaction
of cosmic rays onto the magnetic field is neglected [6]. In these simulations, a set of test particle
trajectories in a predefined magnetic field is computed by solving the Newton-Lorentz equation

d p
d𝑡

= 𝑞
v × [B0 + 𝛿B(r)]

𝑐
, (1)

where 𝑞 is the particle charge, v and p are the velocity and momentum vectors, B0 is a large-scale
coherent magnetic field, and 𝛿B represents a small-scale turbulent field. We will assume magne-
tostatic turbulence throughout (no time dependence on the magnetic field) and, more importantly,
the electric field is neglected due to the high mobility of charges in typical astrophysical plasmas.
The latter assumption also means that the particle energy is conserved and, to ensure this for the
test particle trajectories in the simulations, we adopt the energy conserving Boris method in solving
the Newton-Lorenz equations [7].

Concerning the turbulent magnetic field, it can be generated by magnetohydrodynamics sim-
ulations [8], but the dynamical range that can be simulated limits these simulations to normalized
rigidities 𝑟g/𝐿c > 10−2 [9]. In order to simulate particles at sufficiently small rigidities relevant in
the context of Galactic CR transport, we will rely on synthetic turbulent magnetic fields. The syn-
thetic turbulent magnetic field considered will be a Gaussian random field that has the properties of
a magnetic field and as such fulfils Maxwell’s equations. In this work, we will limit ourselves to the
case where the turbulent field is isotropic and follows a Kolmogorov power spectrum 𝑔(𝑘) ∼ 𝑘−5/3

for 2𝜋/𝐿max ≤ 𝑘 ≤ 2𝜋/with the normalization given by 𝛿𝐵2 = 8𝜋
∫ ∞

0 d𝑘 𝑔(𝑘). The overall strength
of the turbulent component with respect to the total root mean square B-field can be characterized
with the turbulence level [ ≡ 𝛿𝐵2/

(
𝐵2

0 + 𝛿𝐵2) .
We note also that, in order to cover a large dynamical range of the power spectrum, the

turbulent magnetic field is set up on a nested grid which is built by superimposing multiple grids
with different sizes following the approach introduced in Ref. [10]. Essentially, plasma waves with
small to large wavelengths are resolved on subgrids with small to large grid spacing. We refer
interested readers to Ref. [11] for more technical details on the configuration of these subgrids. In
our simulations, we are not sensitive to the individual parameter values of particle rigidity R, the
correlation length2 𝐿c (𝐿𝑐 ≃ 𝐿max/5 for isotropic Kolmogorov turbulence) and the root mean square
B-field 𝐵rms =

√︃
𝐵2

0 + 𝛿𝐵2, but only to the combination 𝑟g/𝐿c. Therefore, our simulations can be
applied to different combinations of these parameters. However, when considering the use for a
particular physics case, e.g. transport of Galactic CRs, we often adopt fiducial parameter values.
Specifically, we consider an outer scale 𝐿max = 150 pc (or 𝐿c ≃ 30 pc for Kolmogorov turbulence)
[12]. With an rms value of 4 `G, the gyroradius evaluates to 𝑟g = 0.270 pc(R/PV) (𝐵rms/4 `G)−1.
We run these simulations on GPU in order to compute in parallel a sufficiently large number of
trajectories within limited computing times and, thanks to this efficient parallelization, we can
explore perpendicular transport at unprecedentedly low rigidities.

2The correlation length is defined such that
∫ ∞
−∞ d𝐿 ⟨𝛿𝐵(𝑟0) · 𝛿𝐵(𝑟0 + Δ𝑟 (𝐿))⟩ ≡ 𝐿c𝛿𝐵2
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Figure 1: Left panel: Parallel running diffusion coefficient at reduced rigidity 𝑟g/𝐿c = 8.9 × 10−3 for
different turbulence level [ = 0.2, 0.5, and 0.8 (see legend). Right panel: Same as in the left panel but for
perpendicular running diffusion coefficient.

3. Particle diffusion coefficients

Once the test particle trajectories are computed for many different realizations of the turbulent
magnetic field, they can be used to infer parameters of the transport model, such as the diffusion
coefficient [4, 13], predict spectra or large-scale anisotropies [14, 15], or investigate effects beyond
the standard picture of cosmic ray transport such as the generation of small-scale anisotropies in
the arrival directions [16–18].

In this work, we will focus essentially on understanding the nature of particle transport in
isotropic Kolmogorov turbulence which can be characterised, roughly speaking, by the time-
dependence of the mean-square displacement in different directions 𝑖, ⟨(Δ𝑟𝑖)2⟩. If this is of power
law form, that is

⟨(Δ𝑟𝑖)2⟩ =
〈
(𝑟𝑖 (𝑡) − 𝑟𝑖 (0))2〉 ∝ 𝑡𝛼 , (2)

transport is called sub-diffusive if 0 < 𝛼 < 1, diffusive for 𝛼 = 1, super-diffusive for 1 < 𝛼 < 2
and ballistic for 𝛼 = 2 [3, 6]. The diffusion coefficient ^, that is the constant of proportionality in
Eq. (2) for the case of diffusive transport, plays a central role in the transport theory of CRs. In order
to derive diffusion coefficients from test particle simulations, we have to first define the running
diffusion coefficient with respect to direction 𝑖 as 𝑑𝑖𝑖 (𝑡) ≡ 1

2
d
d𝑡 ⟨(𝑟𝑖 (𝑡) − 𝑟𝑖 (0))2⟩ . Specifically, since

the isotropy of the space is broken by the presence of a background magnetic field, here assumed
to point in the 𝑧-direction, we distinguish the parallel and the perpendicular running diffusion
coefficients as follows 𝑑 ∥ (𝑡) = 𝑑𝑧𝑧 (𝑡) and 𝑑⊥(𝑡) =

(
𝑑𝑥𝑥 (𝑡) + 𝑑𝑦𝑦 (𝑡)

)
/2. If transport is diffusive

at late times, those converge towards the asymptotic diffusion coefficients ^ ∥ ≡ lim𝑡→∞ 𝑑 ∥ (𝑡) and
^⊥ ≡ lim𝑡→∞ 𝑑⊥(𝑡).
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Figure 2: Asymptotic parallel and perpendicular mean free paths _ ∥ and _⊥ as a function of reduced rigidity
𝑟g/𝐿c for different turbulence levels [ = 0.2, 0.5, 0.8 and 1 overlaid with results from [19, 20].

3.1 Running diffusion coefficients

We start the discussions by looking at the parallel and perpendicular running diffusion coeffi-
cients which are computed from particle trajectories following the approach mentioned above. In
Fig. 1, we show 𝑑 ∥ (𝑡) and 𝑑⊥(𝑡) at reduced rigidity 𝑟g/𝐿c = 8.9× 10−3 corresponding to rigidity of
1 PV for our fiducial parameters (𝐿max = 150 pc, 𝐵rms = 4 `G) for different turbulence levels.

It is clear from the results for 𝑑 ∥ (𝑡) that there are essentially three stages of parallel transport. For
Ω𝑡 ≪ 1, the particles are moving ballistically into their initial direction and are not yet affected by the
magnetic field. The mean square displacement, e.g. in the 𝑧-direction is ⟨(𝑧 − 𝑧(0))2⟩ = (1/3)𝑣2𝑡2.
Therefore, 𝑑 ∥ (𝑡) = 𝑣2𝑡/3 or 𝑑 ∥/(𝑣𝐿c) = (1/3)Ω𝑡 𝑟g/𝐿c. For 1 ≪ Ω𝑡 ≪ Ω𝜏s ≃ 3Ω^ ∥/𝑣2,
particles have started to gyrate in the effective background magnetic field. While the mean-square
displacement still grows ∝ 𝑡2, it does so with a reduced rate such that 𝑑 ∥ (𝑡) = 𝐴𝑣2𝑡/3 with 𝐴 < 1.
It can be shown that 𝐴 = 1 + 2𝜎4

eff − 2𝜎2
eff coth

(
1/𝜎2

eff

)
where 𝜎eff = arctan

(√︃
𝛿𝐵2/𝐵2

0

)
, for

instance 𝐴 ≃ 0.4 for [ = 0.5 [11]. Note that we have introduced also the scattering time 𝜏s which
marks the transition between ballistic and diffusive transport in the parallel direction. Finally, for
Ω𝑡 ≫ Ω𝜏s, pitch-angle scattering is reducing the mean square displacement to diffusive behaviour,
⟨(𝑧−𝑧(0))2⟩ ∝ 𝑡. Consequently, the running diffusion coefficient, 𝑑 ∥ (𝑡) flattens out. The asymptotic
value ^ ∥ (𝑡) and the transition time, of course, depend on the reduced rigidity 𝑟g/𝐿c. We will discuss
this rigidity-dependence in more detail in Sec. 3.2.

The time-dependence of the running perpendicular diffusion coefficient is slightly more com-
plicated and can be described with four phases of transport which are separated by the times
Ω𝑡 = 1, Ω𝜏s and Ω𝜏c. For Ω𝑡 ≪ 1, the particles are not affected by the magnetic field and move
ballistically. The mean-square displacement in the 𝑥- and 𝑦-directions does not differ from the
one in the 𝑧-direction and so the running diffusion coefficients are both 𝑑 ∥ (𝑡) = 𝑑⊥(𝑡) = 𝑣2𝑡/3 or
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𝑑 ∥/(𝑣𝐿c) = 𝑑⊥/(𝑣𝐿c) = (1/3)Ω𝑡 𝑟g/𝐿c. For 1 ≪ Ω𝑡 ≪ Ω𝜏s, particle motion does get affected by
the effective background magnetic field and particles start gyrating about the effective background
field direction. This is best seen at low turbulence levels, e.g. [ = 0.2. There is also a suppression
of the perpendicular running diffusion coefficient, but in the opposite direction: Whereas for 𝑑 ∥ ,
the suppression gets stronger for larger turbulence level [, for 𝑑⊥ the suppression is larger for small
[. This can be understood in the following way: In the limit 𝛿𝐵 → 0, the motion in the 𝑥- and
𝑦-directions would be merely a gyration. A finite 𝛿B misaligns the effective magnetic field direction
from the 𝑧-direction such that part of the gyration in the perpendicular plane now contributes to
the parallel motion; in turn, some of the parallel ballistic motion, contributes to the transport in the
𝑥- and 𝑦-directions. The larger [, the stronger is this effect. For Ω𝜏s ≪ Ω𝑡 ≪ Ω𝜏c, perpendicular
transport is sub-diffusive, 𝑑⊥ ∝ 𝑡𝛼−1 with 𝛼 < 1. Here, we have introduced 𝜏𝑐 which marks the
transition between sub-diffusive and diffusive transport. Roughly speaking, 𝜏c is the time it takes
for particles to transport perpendicularly by a distance of about one correlation length [21]. We
note also that the subdiffusive behaviour is reminiscent of so-called compound subdiffusion [22],
an effect due to diffusive particle transport along diffusive field lines. However, while compound
subdiffusion predicts 𝑑⊥ ∝ 𝑡1/2, we do not find this scaling for all [, see the dotted line in Fig. 1. We
note that the transition to this regime sets in later for smaller [ as 𝜏s is larger. Finally, for Ω𝜏c ≪ Ω𝑡,
perpendicular transport also becomes diffusive and 𝑑⊥ attains its asymptotic value, ^⊥.

3.2 Rigidity dependence of asymptotic diffusion coefficients

In Fig. 2 we show the mean free paths _ ∥ = 3^ ∥/𝑣 and _⊥ = 3^⊥/𝑣 as functions of rigidity, for
the different turbulence levels [ = 0.2, 0.5, 0.8 and 1. Note that we have derived the asymptotic
values by averaging the values 𝑑 ∥ and 𝑑⊥ within Ω𝑡max/2 ≲ Ω𝑡 ≤ Ω𝑡max where 𝑡max is the maximum
run time for the simulations. The errors of these estimates are also obtained by averaging the
standard errors of the mean within this time period. We have also plotted some lines with constant
power law indices. For reduced rigidities 𝑟g/𝐿c ≪ 1, the asymptotic parallel diffusion coefficient ^ ∥
exhibits the (𝑟g/𝐿c)1/3-dependence expected for gyro-resonant interactions due to turbulence with
a power spectrum 𝑔(𝑘) ∝ 𝑘−5/3. At rigidities 𝑟g/𝐿c ≫ 1, the (𝑟g/𝐿c)2-dependence of small-angle
scattering is visible (e.g. [23]). We note that the normalisation of the diffusion coefficient decreases
with increasing turbulence level [. We have also plotted the results from Ref. [19] which uses the
same turbulence model. The agreement is excellent in the range where the simulation data overlap.

As far as the perpendicular diffusion coefficient is concerned, its rigidity-dependence is more
complicated. Again, we show a power law ∝ (𝑟g/𝐿c)1/3 that matches the simulation results at low
rigidities. However, it appears that the data follow this dependence only over a limited rigidity
range. At intermediate rigidities, ^⊥ grows faster than (𝑟g/𝐿c)1/3; for 𝑟g/𝐿c ≳ 1, ^⊥ becomes
constant. The behaviour at intermediate and large rigidities is in line with the behaviour seen in
Ref. [5]. The normalisation at low rigidities shows the expected ordering in that the diffusion
coefficient is smaller for smaller [. The deviation from the (𝑟g/𝐿c)1/3-behaviour sets in at rigidities
𝑟g/𝐿c ∼ 10−2 for [ = 0.8 and at 𝑟g/𝐿c ∼ 3 × 10−3 for [ = 0.5. We have not actually observed the
(𝑟g/𝐿c)1/3-scaling for [ = 0.2 for the rigidities for which we were able to run simulations.

These results might have profound phenomenological consequences as some of deviations
between isotropic diffusion models and spatial distribution of CRs derived from gamma-ray obser-
vations have been suggested to be due to a different rigidity-dependence of _ ∥ and _⊥ [24]. Our
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simulation results, however, find the same (𝑟g/𝐿c)1/3-scaling for both _ ∥ and _⊥ at low rigidites
making this hypothesis less viable in explaining these deviations.

4. Conclusion

Perpendicular transport of high-energy particles is important in a number of environments
and a sound theoretical understanding is important when interpreting observations, be it of in-situ
observations in the heliosphere, studies of Galactic CRs or non-thermal emission from sources.
Our simulations have shown that the rigidity-dependence of the perpendicular mean free path _⊥
differs from that of the parallel mean free path _ ∥ for reduced rigidities 𝑟g/𝐿c ≲ 1; at even lower
reduced rigidities 𝑟g/𝐿c ≪ 1, however, the perpendicular diffusion coefficient returns back to
the same scaling. Specifically, for Kolmogorov turbulence, _ ∥ ∝ (𝑟g/𝐿c)1/3 for all 𝑟g/𝐿c ≲ 1
and _⊥ ∝ (𝑟g/𝐿c)0.5 for 10−2 ≲ 𝑟g/𝐿c ≲ 1. Previous analyses had instead speculated about
the _⊥ ∝ (𝑟g/𝐿c)0.5 behaviour extending to the lowest rigidities. However, our simulations at
unprecedentedly low rigidities reveal that _⊥ ∝ (𝑟g/𝐿c)1/3 again for 𝑟g/𝐿c ≲ 10−2. We have
provided also an analytical model in Ref. [21] that is able to reproduce this scaling as long as the
subdiffusive phase in the running field line diffusion coefficient is taken into account.
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