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On October 9th 2022, the Swift-BAT telescope detected a spectacular transient event,
soon classified as a Gamma-Ray Burst (GRB), based on the Fermi-GBM observation per-
formed one hour earlier. Photons up to TeV energies were observed from such GRB by
LHAASO, corresponding to the highest energy ever detected from a GRB. Just after this
detection, a large number of observatories detected and characterized the multi-wavelength and
multi-messenger emissions of this GRB, in one of the largest worldwide follow-up campaigns ever.

The KM3NeT neutrino telescope was one of the experiments that participated in the
follow-up effort. KM3NeT is currently being built in the Mediterranean Sea and is composed
of two detectors: ORCA, optimized for the detection of signals induced by neutrinos in the
GeV-TeV range, and ARCA, mainly focused in neutrinos at the TeV-PeV range. MeV neutrinos
can also be detected by looking for rate coincidences of Photo-Multipliers Tubes signals in both
detectors. A first fast analysis was performed using data from the online reconstruction chain. In
this contribution, we present a refined follow-up analysis, where new offline features are added
together with improved calibration and optimized event selection.
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1. GRB 221009A

On 2022 October 9, at 13:16:59.0 UT (𝑇0 from now on) the GBM instrument onboard the Fermi
satellite triggered an extraordinarily bright transient phenomenon [1]. Shortly later, at 14:10:17 UT,
the Swift-BAT telescope also detected a transient event consistent with the location of Fermi-GBM
(but with better accuracy) and with candidate counterparts by Swift-XRT and Swift-UVOT [2]. The
event was located at RA=288.263◦ and DEC= +19.803◦ (J2000) with an uncertainty of 3 arc mins.
The transient was quickly identified as a long Gamma-Ray Burst (GRB), probably as a consequence
of the collapse of a supermassive star.

GRB 221009A is one of the brightest gamma-ray bursts ever detected. Notably, the LHAASO
gamma-ray observatory reported the observation of this event at unprecedented TeV energies [3].
Fermi-LAT also detected photons with energies up to ∼ 99 GeV, being the highest energies ever
detected by such instrument [4].

This GRB is a relatively nearby event, with a redshift of 𝑧 = 0.151 and an isotropic energy of
at least 2 · 1054 erg based on the gamma-ray fluence measured by Fermi-GBM [5]. The proximity,
together with the fact that the jet emission is thought to be very collimated [6], could explain the
extraordinary brightness of this event.

GRB 221009A has been proposed to be a collapsar, i.e. a very energetic supernova that results
from an extreme core-collapse scenario [7]. However, there has not been observed clear evidence for
a supernova signal [8]. Results from this long GRB have been reported by various multi-wavelength
facilities such as MAXI/GSC [9], INTEGRAL SPI/ACS [10] or HAWC [11], among others. Close
to fifty entries were published in the Gamma-ray Coordinate Network (GCN) [12] during the three
days after the event, which proves the relevance of the event for the astrophysical community and
motivates multi-messenger campaigns.

The peculiar characteristics of this GRB made it very interesting also for neutrino astronomy
studies. Indeed, there are several models that predict the emission of TeV-PeV neutrinos from
GRBs as a result of hadronic interactions of protons with high-density matter or radiation field
photons [13]. The IceCube Neutrino Observatory reported the results of a fast follow-up one day
after the event [14]. The analysis was based on two track-like muon neutrino searches:

• Using a time window [𝑇0 − 1 h, 𝑇0 + 2 h]: no track-like events were found in coincidence.
The upper limit of the time-integrated muon-neutrino flux was set at 𝐸2𝑑𝑁/𝑑𝐸 = 3.9 · 10−2

GeV cm−2 at 90% CL (assuming an E−2 power law).

• During a time window of𝑇0 ± 1 day: a p-value of 1.0 was reported, consistent with background
expectations. In this case, the time-integrated muon-neutrino flux upper limit was set at
𝐸2𝑑𝑁/𝑑𝐸 = 4.1 · 10−2 GeV cm−2 at 90% CL (assuming an E−2 power law).

A refined search was published months later by the IceCube Collaboration, including restrictive
upper limits in the neutrino emission from GRB 22100A in a broad energy range [15].

The KM3NeT Collaboration also reported results for a quick follow-up search three days after
the event [16]. Indeed, the Online KM3NeT framework [17, 18] for multi-messenger studies was
in the commissioning period at that time. Three different real-time analyses were performed:
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• A low energy analysis in the MeV range, based on the search for the maximum number
of 10 ns coincidences between Photo-Multipliers Tubes (PMTs) in single modules during
500 ms, computed every 100 ms. A post-trial p-value of 0.9 was reported, compatible with
background expectations.

• Two high-energy searches (one for KM3NeT/ORCA and one for KM3NeT/ARCA) based on
binned techniques [18]. In the case of ARCA (ORCA) a search cone with a radius of 4◦ (2◦)
centered around the GRB position and the time window [T0−50 s, T0+5000 s] were used,
with zero events observed and ∼ 0.1 events expected from the atmospheric background.

The present work includes a refined search for neutrino emission from GRB 221009A using
KM3NeT data, including new features such as improved calibrations and dedicated Monte Carlo
(MC) simulations. Section 2 includes a detailed description of the KM3NeT detectors. Section 3
describes the method used to perform the follow-up analysis. The results and the conclusions are
provided in Sections 4 and 5, respectively.

2. The KM3NeT detectors

KM3NeT [19] (Cubic Kilometre Neutrino Telescope) is an international collaborative project
currently deploying two deep-sea detectors in the Mediterranean Sea. These detectors consist of
three-dimensional arrays of PMTs, able to detect the Cherenkov light emitted by particles resulting
from neutrino interactions in seawater. The construction comprises two separate arrays: ORCA
(Oscillation Research with Cosmics in the Abyss) and ARCA (Astroparticle Research with Cosmic
in the Abyss).

On one hand, ORCA, located 40 km from Toulon at a depth of 2.5 km, is designed to study
atmospheric neutrino oscillations and the neutrino mass hierarchy. On the other hand, ARCA,
located 100 km from Portopalo di Capo Passero, Sicily, at a depth of 3.5 km, is optimized for
studying high-energy neutrinos originating from astrophysical sources. The complementarity of
the two detectors allows to study neutrinos from the MeV range up to PeV energies.

The main components of the KM3NeT detectors are the Digital Optical Modules (DOMs) [20],
pressure-resistant glass spheres, each housing 31 PMTs. This multi-PMT approach, as opposed to
using a single large PMT in each module, offers advantages such as the ability to identify physical
signals through coincident hits on the same DOM. Each vertical string of 18 DOMs is called a
Detection Unit (DU), and a grouping of 115 DUs forms a building block.

ORCA has a higher DOM density that enables it to study neutrinos in the GeV energy range. In
contrast, ARCA has a lower density of DOMs, allowing it to cover a broader energy range, spanning
from the sub-TeV range up to a few PeVs. This complementary between the two detectors motivates
studies across a wide energy spectrum. Additionally, the high-duty cycle (> 95%) and the good
angular resolution of the detectors (below one degree for 𝐸 > 10 TeV) make them excellently suited
instruments to perform multi-messenger studies such as the present work.

During October 2022, when GRB 221009A took place, ARCA had 21 DUs in operation, while
ORCA counted 10 DUs. These partial configurations were taking good-quality data, monitoring
the sky searching for neutrino signals.
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Figure 1: Skymap with the position of GRB 221009A in equatorial coordinates. The green shadowed region
indicates the instantaneous visibility for upgoing events of KM3NeT/ARCA at the moment of the event
(similar to the one of KM3NeT/ORCA).

3. Search method

As mentioned in Section 1, the data used in this analysis are at a refined calibration level with
respect to the first, fast analyses performed earlier. An acoustic dynamical correction has been
implemented to estimate the positions of the DOMs after the lines displacement due to currents in
the seabed [21]. Additionally, a dedicated MC has been produced to compute the expected signal
and set upper limits in the fluence emission.

As GRB position, the one given by Swift-BAT has been considered [2] (due to its better angular
resolution) using as 𝑇0 the trigger time by Fermi-GBM [1]. Three different time windows have been
investigated using both ARCA and ORCA independently:

• One short-duration search in the range [𝑇0 − 50 s, 𝑇0 + 5000 s], as the online follow-up, with
a downgoing track event selection (i.e. events reconstructed as not crossing the Earth).

• Two long-duration searches in the range𝑇0 ± 1 day: one using an upgoing track event selection
(i.e. events reconstructed as crossing the Earth) and another with a downgoing one.

The format of these searches is motivated by the fact that GRB 221009A was in the downgoing
sky of the KM3NeT detectors at the time of the event, as shown in Figure 1. The analyses have been
conducted by selecting only the corresponding upgoing or downgoing events during the period of
the time windows considered. Indeed, for 45.2% of the time during one day, the location in the sky
of GRB 221009A was found to be in the upgoing sky of the KM3NeT detectors.

The search method is based on a binned ON/OFF technique [22]. The ON region is defined
as the area of the sky where the signal is expected to dominate over the atmospheric background,
while the OFF region is defined as a region comparable to the ON region where only background is
expected. We use as ON region a circular cone centered in the GRB position, which represents the
Region of Interest (RoI) of the analysis. The OFF region is a declination/elevation band (for time
windows above/below the day range) that is re-scaled in solid angle and time to the ON region size.
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The event selection is based on the reconstruction variables of track-like events, i.e. events
with a straight-line pattern that are originated in charged-current interactions from muon-flavour
neutrinos and some tau-flavour. These events represent the ones with the best angular resolution.
Cascade-like events, i.e. spherical-pattern events that emerge from electron-neutrino and some tau-
flavour charged-current interactions, and neutral-current neutrino interactions, are not considered
in this analysis.

The selection has been optimized in order to achieve a background level where one single event
in the ON region provides a 3𝜎 excess with respect to the expected background. Using a 2-sided
convention, this corresponds to an expected background ≤ 2.7 · 10−3 events. From all the event
selections that fulfill this condition, we select the one that provides the largest expected signal,
which has been computed from MC simulations assuming a neutrino flux 𝜙 ∝ 𝐸−2. Systematic
effects have been taken into account in these expectations computed from simulations, such as the
uncertainty in the reconstruction direction of the data events.

For KM3NeT/ORCA, a data livetime of ∼41 days has been used to estimate the expected
background in the OFF region, re-scaled in time to the ON region time window. Consideration
has been given to ensure stable data-taking conditions during the period studied. The event
selection optimization is done on a machine learning classification score [23] that aims to reduce
the large background of atmospheric muon events. After some minimal quality cuts, the 3𝜎-1event
optimization has been performed to determine the optimum values for the classification score and
the RoI radius.

For KM3NeT/ARCA, a similar stability study has been conducted using a sample with ∼70
days of livetime. This analysis applies straightforward selections on the reconstruction variables of
the track-like events. In concrete, the optimization focuses on the quality of the event reconstruction,
the estimated angular uncertainty of the event, the number of hits used in the reconstruction, and
the estimated length of the track event in meters. The latter variable, which is useful to reject
atmospheric muons misreconstructed as upgoing, is substituted in the downgoing analyses by a cut
in the energy estimator in order to address the high atmospheric muon contamination in this part of
the sky.

4. Results

After the optimization procedure described in Section3, the KM3NeT data was unblinded. No
candidate neutrino event has been found in any of the searches performed. The expected signal
events (from MC simulations) together with the expected background events (from data in the OFF
region) are provided in Table 1.

Given a null result in the correlation analyses, upper limits (UL) in the neutrino emission from
GRB 221009A were determined. The 90% CL UL in the flux normalization factor is defined as

ΦUL
0 (90% CL) ≡

𝜇𝐹𝐶90 (𝑛𝑏)
𝐴𝑐𝑐

, (1)

where 𝜇𝐹𝐶90 (𝑛𝑏) denotes the 90% CL UL in the number of events by Feldman-Cousins [24]. 𝐴𝑐𝑐

in eq. 1 stands for the detector acceptance, a quantity defined as the proportionality constant that
relates the number of expected signal events with a given flux normalization.
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ANALYSIS RoI radius
Expected signal

events
Expected background

events
Events in
ON region

ARCA upgoing
𝑇0 ± 1 day

1.7◦ 4.7 · 10−3 (2.7 ± 0.2) · 10−3 0

ARCA downgoing
𝑇0 ± 1 day

1.0◦ 1.2 · 10−3 (2.6 ± 0.1) · 10−3 0

ARCA downgoing
𝑇0 [−50s, +5000s] 1.2◦ 4.4 · 10−5 (2.66 ± 0.03) · 10−3 0

ORCA upgoing
𝑇0 ± 1 day

1.2◦ 3.5 · 10−4 (2.7 ± 0.3) · 10−3 0

ORCA downgoing
𝑇0 ± 1 day

1.0◦ 1.7 · 10−5 (2.7 ± 0.3) · 10−3 0

ORCA downgoing
𝑇0 [−50s, +5000s] 5.4◦ 6.9 · 10−8 (2.7 ± 0.3) · 10−3 0

Table 1: Results of the analyses performed, both for KM3NeT ARCA and ORCA searches. The RoI used
in each search is shown, together with the expected number of background and signal events. No candidate
event has been found inside the ON region for any of the searches.

Since we are dealing with a transient event, it is also interesting to set an UL on the radiant
fluence which is defined as the energy flux (per flavour) integrated over a certain emission period
of interest. It can be computed as

F UL = Δ𝑇

∫ 𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝐸ΦUL
0

(
𝐸

𝐸0

)−𝛾
𝑑𝐸, (2)

where Δ𝑇 is the time window covered, 𝐸0 is a reference energy level, in our case 1 GeV, and 𝐸𝑚𝑖𝑛

and 𝐸𝑚𝑎𝑥 correspond respectively to the 5% and 95% energy quantiles in the energy range of the
detectable neutrino flux. The UL results for the six searches performed are provided in Table 2.

These results can be compared with the ones obtained by the IceCube Neutrino Observatory
in similar searches. Figure 2 shows an adaptation of Figure 1 in [15], where the results from
the present contribution have been added alongside the ones of IceCube. In concrete, ULs on
𝐸2𝐹 (𝐸) = Δ𝑇 × Φ𝑈𝐿

0 , the energy-scaled per-flavour neutrino flux, integrated in time, have been
computed to include the results in the mentioned figure. Only the ULs derived for a 𝛾 = 2 spectral
index are shown. Note that a direct comparison is not straightforward, as each UL is computed
according to different time window assumptions. The results derived in these searches are coherent
with the ones obtained by IceCube, considering that we have worked with partial configurations of
both KM3NeT detectors.

5. Conclusions

In this contribution, we have summarised the results of the offline search for neutrino emission
from GRB 221009A performed using KM3NeT data. This analysis, together with the ones presented
in [18], represents the first multi-messenger study performed by the KM3NeT Collaboration.
Moreover, this is the first analysis where data from ARCA in the 21-line configuration, and ORCA
in the 10-line one, have been analyzed.
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Figure 2: Comparison of the upper limits derived for IceCube and KM3NeT on the energy-scaled time-
integrated neutrino emission from GRB 221009A (left y-axis), together with several gamma-ray observations.
The right y-axis shows the differential isotropic equivalent energy. All the neutrino ULs shown are derived
for a 𝛾 = 2 spectral index. This figure has been adapted from Figure 1 in [15], incorporating the results
obtained in this contribution. More information about the IceCube results and the electromagnetic results
can be consulted in [15].

ANALYSIS Φ0 UL
[GeV−1cm−2s−1]

5%
energy
quantile

95%
energy
quantile

Radiant
fluence F𝑈𝐿

[GeVcm−2]

𝐸2𝐹 (𝐸) UL
[GeVcm−2]

ARCA upgoing
𝑇0 ± 1 day

6.2 · 10−6 6.1 TeV 8.7 PeV 7.8 5.4 · 10−1

ARCA downgoing
𝑇0 ± 1 day

2.6 · 10−5 211.1 TeV 36.8 PeV 22.6 2.2

ARCA downgoing
𝑇0 [−50s, +5000s] 2.3 · 10−4 38.8 TeV 27.3 PeV 7.6 1.2

ORCA upgoing
𝑇0 ± 1 day

7.4 · 10−4 133 GeV 9.8 TeV 5.4 · 102 6.4 · 101

ORCA downgoing
𝑇0 ± 1 day

1.6 · 10−2 68 GeV 8.8 TeV 1.3 · 104 1.0 · 103

ORCA downgoing
𝑇0 [−50s, +5000s] 3.8 54 GeV 8.7 TeV 9.8 · 104 1.9 · 104

Table 2: UL results in the neutrino emission from GRB 221009A for the analyses performed, both for
KM3NeT ARCA and ORCA. F𝑈𝐿 stands for the energy-integrated per-flavour neutrino flux integrated over
the emission period, while 𝐸2𝐹 (𝐸) represents the energy-scaled per-flavour neutrino flux, also integrated
in time. The 90% sensitivity energy range is also provided. Note that in the case of KM3NeT/ARCA, the
energy range goes up to the few PeV range.
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Despite no neutrino candidate has been found, upper limits have been set in the flux normal-
ization factor and in the fluence neutrino emission of GRB 221009A. The next step is to reduce
the latency of this kind of search and be able to introduce typically offline features (dynamic cali-
brations, UL computations, etc.) in the online follow-ups. For that purpose, the KM3NeT Online
Framework [17] will include analysis methods derived from this contribution.
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