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The detection of gravitational waves (GWs) has opened up new avenues for studying the universe
and testing fundamental physics. As LIGO, Virgo and KAGRA start another observation run
(O4) this year with an improved sensitivity, non-axisymmetric neutron stars emitting quasi-
monochromatic, long-standing GWs are expected to be within the detectors’ frequency bands.
However, their detection in the presence of noise is a challenging problem. In recent years,
Convolutional Neural Networks (CNNs) have been proposed as a potential solution to this issue.
This study explores the effectiveness of CNNs for detecting CWs embedded in simulated noise
as well as in real noise obtained from the O3 observation run. The model is trained on a set of
104 templates of Continuous Waves (CWs) signals immersed in Gaussian noise with time gaps.
Moreover, we evaluated the CNN’s capability to generalize in signal-to-noise-ratio (SNR) and
signal frequency. The results show that the CNN model is successful in detecting signals in
simulated noise for the frequency band ranging from 100 to 1000 Hz, achieving high detection
accuracy and low false positive rates. Nevertheless, when evaluating the model in data with real
noise, which contains non-stationary noise and instrumental artifacts, its performance deteriorates.
Such limitations suggest that more advanced methods are needed to analyze gravitational wave
data effectively.
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1. Introduction

Unlike transient gravitational wave events from compact binary mergers [1–3], which manifest
as brief bursts, Continuous Gravitational waves (CWs) are a class of GWs that endure over extended
periods of time [4]. The emission mechanism of CWs arises from the intrinsic asymmetry in the
mass distribution of rotating objects. As these entities spin, their non-spherical configurations
induce periodic oscillations in the surrounding spacetime, giving rise to GWs characterized by a
quasi-monochromatic frequency [5]. This frequency remains remarkably constant, as long as the
rotational dynamics of the object remain stable.

With an improved sensitivity for Observation run O4 [6], ground-based interferometers are
expected to detect CWs emitted within our galaxy. However, their detection and analysis present
unique challenges, primarily due to their relatively low amplitudes, rendering them extremely
susceptible to interfering background noise [7]. It has been estimated that the upper limit on the
CWs strain amplitude ℎ0 is ∼ O(10−25) [8]. Given that the signal-to-noise ratio (SNR) increases
with longer observation time [9], one needs to integrate a substantial amount of data for optimal
results. In the most favorable scenario, a signal with a SNR = 5, would require a period of 𝑇 ∼ 300
days comprising high-quality data, therefore yielding the computational costs associated with a
coherent analysis of such signal practically unfeasible. Hence, alternative analysis methods are
needed to circumvent the demand of the high amount of computational resources.

In recent years, Deep Learning (DL) techniques have emerged as powerful tools for address-
ing these kind of complexities [10]. It utilizes artificial neural networks with multiple layers to
automatically learn and extract intricate patterns and representations from complex datasets. In
particular, Convolutional Neural Networks (CNNs) are designed for processing grid-like data (such
as images or spectrograms) to automatically learn and extract spatially local features, capturing
important patterns and structures [11]. One of the key advantages of deep learning is its ability
to automatically learn feature representations from raw data, reducing the need for manual feature
engineering and allowing the model to discover complex and non-linear relationships.

In the context of GWs physics, CNNs have been used for a number of applications [12], namely
parameter estimation of transient signals [13, 14], signal denoising [15], wave form modeling
[16, 17] and detection and classification of glitches [18, 19] to name a few. For CWs physics, DL
has the potential to significantly enhance the sensitivity and efficiency of searches. Neural Networks
can be trained on simulated data sets, enabling them to recognize and distinguish subtle signals from
background noise. Moreover, DL methods can facilitate real-time analysis and enable the rapid
identification of potential gravitational wave candidates. They offer the advantage of adaptability
and scalability, allowing the algorithms to improve over time as more data becomes available.

In this work, we explore the use of CNNs to develop a binary classifier capable of detecting
CW signals immersed in Gaussian noise data with time gaps. Our goal is to determine how well a
Neural Network can generalize its detection capabilities. The CNN under consideration is trained
utilizing a curriculum learning approach and employing a transfer learning method rooted in the
ResNet-50 architecture [20].
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2. Method

Deep learning models use optimization algorithms that iteratively adjust the weights and biases
of the network to minimize the difference between predicted outputs and the true labels. In this
work, we use the amplitude of the Short Fourier Transform (SFT) spectrogram as the input data for
the neural network. Such images contain Gaussian noise and a simulated CW signal. The model’s
output is a numerical value ranging from 0 to 1, signifying the level of confidence associated with
the presence of a CW signal. Finally, after training and testing the model on synthetic data, we
evaluate its performance when facing injected CW signals into real detector noise obtained during
the observing run O3 [21].

2.1 Deep Learning approach and Neural Network architecture

An important advancement in the architecture of Convolutional Neural Networks (CNNs) is the
integration of Residual Networks (ResNets), which employ skip connections to effectively bypass
and shortcut specific layers mitigating the vanishing gradient problem. Another notable strategy
for reducing the training time of CNNs is Transfer Learning, which capitalizes on the knowledge
acquired from pre-training a CNN on a comprehensive dataset and applies it to a distinct yet related
task. By leveraging the learned features of the pre-trained network, transfer learning enables the
CNN to benefit from the broad representations and patterns extracted during the initial training
phase. The process of transfer learning involves fine-tuning the pre-trained CNN on the target
dataset by retaining the initial layers that capture low-level features, such as edges and textures,
while the higher-level layers may be replaced to adapt to the specific requirements of the new task.

Here, we employ a transfer learning scheme making use of a 2D CNN called ResNet-50 [20]
and we replace its final layers to adapt to our binary classification problem. Additionally, we adopt
Curriculum learning as a training strategy that aims to enhance the learning process by gradually
presenting the network with training samples in an increasing difficulty order. This approach mimics
the way humans learn, starting from simpler concepts and progressively advancing to more complex
ones. By designing a curriculum that exposes the CNN to easier examples first, the network can
build a solid foundation before addressing more challenging instances.

2.2 Generation of Data

For training and validation of the CNN, we generate two classes of signals with different labels:
𝑖) monochromatic signals embedded in pure Gaussian noise with time gaps (label = 1) and 𝑖𝑖)
signals containing pure Gaussian noise only (label = 0). They were generated using the python
package PyFstat [22]. To implement the curriculum learning scheme, we generated eight different
sets of increasing signal depth (decreasing SNR), defined by D =

√︁
𝑆𝑛 ( 𝑓 )/ℎ0, where 𝑆𝑛 is the

power spectral density of the noise and ℎ0 is the signal amplitude. As for the frequency space, for
each set of a given signal depth, we generate 10 000 spectrograms randomly sampled from 10 Hz
to 1000 Hz following a uniform distribution (See Table 1).

2.3 Data injection

To test the generalization capabilities of our network, we use real noise from the H1 and L1
detectors during the observing run O3 [21] spanning a few weeks up to a couple of months. Then, by
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Table 1: Definition of the parameters for synthetic data generation

Data span 𝑇 = 106 s
Noise Stationary, white, Gaussian
Sky-region All-sky
Signal depth D ∈ [10, 50] Hz−1/2

Frequency band 𝑓 ∈ [10, 1000] Hz
Spin-down ¤𝑓 = −10−9 Hz/s

using the PyFstat package, we inject a CW signal with random sky-location, D ∈ [10, 50] Hz−1/2

and 𝑓 ∈ [10, 1000] Hz.

3. Results

Figure 1: ROC curves of the Neural Network evaluated at three different frequency levels.

3.1 Test on generated data

For the trials on synthetic data, three different models are under consideration: 𝑎) Model
1, trained with signals whose D ∈ [10, 25] Hz−1/2, 𝑏) Model 2, trained with signals having
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D ∈ [10, 35] Hz−1/2 and 𝑐) Model 3, with D ∈ [10, 50] Hz−1/2. Later, the top performer will be
chosen to be evaluated against injected data. To accomplish this, we employ a Receiver Operating
Characteristic (ROC) curve, commonly used to assess the performance of binary classification
models [23]. It plots the True Positive (TP) Rate or Sensitivity against the False Positive (FP) Rate
as the discrimination threshold varies. The ROC curve illustrates the trade-off between sensitivity
and specificity, providing valuable insights into the model’s ability to correctly classify positive and
negative instances at different thresholds.

Next, we test the models on spectrograms with varying frequencies and CWs having a signal
depth D ∼ 50 (or SNR ∼ 60). As we can see in Figure 1, Model 1 shows a better performance over
the other models. Even though it was trained only using the most intense spectrograms, it shows
good generalization capabilities to less intense signals. Thus, Model 1, was chosen to be put to test
against Injected data embedded in real detector noise.

3.2 Test on Injected data

Figure 2: ROC curve for Model 1 when evaluated on data containing real detector noise.

For this test, CWs with frequencies from all across the board and signal depths D ∼ 50 were
injected in real interferometer noise. We took 10 different signals spanning from two weeks to a
couple of months. Each sample was augmented via time shift, flipping and rotation to generate
up to 500 different files. Approximately half of them had a CW signal embedded and the rest
were only detector noise. Figure 2 shows that the performance of Model 1 deteriorates notably
when predicting the labels of signals in real noise data. However, predictions are still better than
pure guess but not as consistent as they were when facing synthetic data. Since detectors’ artifacts
(included in the spectrograms of real noise) mimic the presence of a signal (See Figure 3), prediction
becomes more difficult and proves that any realistic application needs CNNs to be trained with more
realistic simulated noise. It’s worth noticing there are two possible paths that may be followed:
1) training the CNN with CWs injected in real noise from the beginning and 2) finding a way of
generating more realistic data using software, like the pyFstat package used in this study. It would
be interesting to compare both methods and evaluate which one yields a better detection probability
for future searches.
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Figure 3: Left) Time-domain spectrogram with gaps showing a CW signal (note that the signal intensity
was exaggerated for visualization purposes) and right) spectrogram including a detector artifact. We can see
here how image-recognition-based ML falls short since both CW signal and artifact are visually similar.

4. Discussion

In this study, we explored the use of a Residual Neural Network trained with simulated data
and its generalization capabilities when evaluated on CWs signals injected in real detector noise.
As expected, performance decreases due to the presence of artifacts and other glitches. Therefore,
in the future, it will be important to study the effect of such parasite signals and to develop a
comprehensive training strategy for a robust CNN.
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