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Supermassive black holes (SMBHs) power active galactic nuclei (AGN). The vicinity of the SMBH
has long been proposed as the potential site of particle acceleration and neutrino production.
Recently, IceCube reported evidence of neutrino emission from the Seyfert II galaxy NGC 1068.
The absence of a matching flux of TeV gamma rays suggests that neutrinos are produced where
gamma rays can efficiently get attenuated, for example, in the hot coronal environment near the
SMBH at the core of the AGN. Here, we select the intrinsically brightest (in X-ray) Seyfert
galaxies in the Southern Sky from the BAT AGN Spectroscopic Survey (BASS) and search for
associated neutrinos using starting track events in IceCube. In addition to the standard power law
flux assumption, we leverage a dedicated disc-corona model of neutrino production in such an
environment to improve the discovery potential of the search. In this contribution, we report on
the expected performance of our searches for neutrinos from these Seyfert galaxies.
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Southern Hemisphere Seyfert Galaxy Analysis using Starting Track Events with IceCube

1. Introduction

The IceCube Neutrino Observatory at the South Pole recently reported evidence of TeV neutrino
emission from the nearby active galaxy, NGC 1068 [1]. This reinforces the idea that AGN could
contribute to the diffuse flux of high-energy neutrinos observed by IceCube since 2013 [2]. Assum-
ing the flux of neutrinos from NGC 1068 to follow a single power-law, the inferred muon neutrino
flux at neutrino energy 𝐸𝜈 = 1 TeV is 5 × 10−14 GeV−1 cm−2 s−1 with spectral index of 3.2 [1].
The corresponding neutrino luminosity in the 1.5 TeV to 15 TeV energy range is much higher than
the reported GeV-scale 𝛾-ray luminosity by the Fermi Large Area Telescope (LAT) [3, 4] and the
neutrino flux exceeds TeV-scale gamma-ray upper limits reported by MAGIC [5].
The cosmic-ray (CR) interactions that produce neutrinos are expected to also generate a matching
𝛾-ray signature. The absence of TeV gamma-rays from NGC 1068, therefore, suggests that the
production site of high-energy neutrinos must be opaque to high energy 𝛾-rays. Such conditions
can be found in the matter and radiation-dense region in the closest vicinity of the central SMBH,
commonly referred to as AGN corona, a component of the AGN that is known for its brightness
in the X-ray band [6–9]. Coronae are generally assumed to be composed of a hot, highly magne-
tized, and turbulent plasma in the inner region of the accretion disk that is supported by accretion
dynamics and magnetic dissipation [10]. The comptonization of soft photons from the accretion
disc is thought to produce the observed X-rays. If protons are accelerated in this environment, for
example, by turbulent magnetic fields, the Seyfert galaxies that are intrinsically bright in X-rays
may also shine bright in neutrinos [11]. In this work, we refer to the model presented in [8, 11] as
the disc-corona model.
Assuming parameters that could explain the neutrino flux from NGC 1068, and following [11], we
use this model to relate the intrinsic X-ray fluxes to neutrino production for the brightest Seyfert
galaxies reported by BASS in the Southern Sky (𝛿 < −5 ◦). We then use down-going starting
track events [12] recorded by IceCube to search for the corresponding neutrino emission from these
objects. In other words, in this work, we study sources that may be similar to NGC 1068 as far as the
production of neutrinos is concerned. Experimental results from a related IceCube study, applying
the same search strategy to Northern Seyfert galaxies while using through-going neutrino-induced
muon tracks in the Northern Sky, are presented in a separate contribution [13].

2. Neutrino Dataset and Source Selection

Recent progress in the background rejection and reconstruction methods for starting events in Ice-
Cube, cascades [14] and starting tracks [12, 15], has significantly improved the detector’s sensitivity
to neutrino sources in the Southern Sky. Here, we analyze starting track events recorded by IceCube
during a 10.3 year period from May 2011 to January 2022. The event selection criteria and event
reconstruction methods are discussed in [12, 15]. 10, 350 events pass all selection criteria, of which
2, 091 events are down-going, i.e., originate from the Southern Sky, and therefore contribute to this
analysis. 90% of these events have estimated neutrino energies ranging from 1.4 TeV to 29 TeV.
The median angular resolution in the Southern Sky ranges from ∼ 2 deg at a neutrino energy of
1 TeV to ∼ 0.4 deg at 1 PeV. For a detailed discussion of this neutrino dataset and its performance,
see [12, 15].
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Figure 1: Left: intrinsic flux at 2–10 keV of Seyfert galaxies in Southern Hemisphere plotted against neutrino
expectations by using disk-corona model flux vs. distance of the source from Earth, where selected sources
above the dashed line. Right: disk-corona model predicted neutrino spectral flux of selected catalog sources
with the top four predicted brightest sources highlighted as solid curves.

BASS [16] is an all-sky study of Swift/BAT detected X-ray AGN. We use the source classifications
from the 105-month 𝑆𝑤𝑖 𝑓 𝑡-BAT survey [17, 18] to identify the Seyfert galaxies among the Southern
sources in BASS. Combining the disc-corona neutrino flux model [8, 11] with the intrinsic X-ray
luminosities (2 − 10 keV, absorption corrected), and distances reported by BASS, we compute the
expected number of neutrinos in our dataset, accounting for the corresponding IceCube neutrino
effective area. Fig. 1 (left) shows the resulting expected number of neutrinos as a function of
the distance of each Seyfert galaxy. We then choose the top 14 Southern Seyfert galaxies for our
analysis using the neutrino expectation as a metric. The neutrino fluxes predicted by the disc-corona
model for our selection of Seyfert galaxies is shown Fig. 1 (right). The two objects with the largest
number of expected neutrinos are Centaurus A (Cen A) and Circinus Galaxy, with 2.5 and 1.7
neutrinos predicted, respectively, if all of our assumptions are exactly met. In total, we expect 7.2
neutrinos from our selection of Seyfert galaxies. The distribution of these sources in the Southern
Sky and their expected number of neutrinos are shown in Fig. 2.

Cen A differs from the typical Seyfert galaxy in our sample in that it is known for its radio-bright,
relativistic jet. While typical, "radio-quiet" Seyfert Galaxies are usually not detected in the gamma-
ray bands [19], Cen A is known to emit gamma-rays up to the VHE regime [20], which may
originate from this jet. Similarly, the origin of the X-ray emission of Cen A is under debate, with a
jet origin being one possibility [11]. In our modeling, we have assumed that the X-rays are coronal
in nature, thus making the predicted number of neutrinos highly uncertain for this source. As the
X-ray emission from Circinus Galaxy is believed to be coronal in origin, the model prediction is
more robust, thus making it the most promising source in this analysis. Due to its proximity to the
Milky Way, Circinus Galaxy is, in principle, visible as an extended object. Nevertheless, neutrino
emission from the coronal region of its AGN would appear as a point-like source to IceCube.
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Figure 2: Distribution of the Seyfert Galaxies in the southern Sky, that are selected for this work. The
color code represents the expected number of neutrinos using the disk-corona flux model. The gray line
denotes the location of the galactic plane. The skymap uses equatorial coordinates.

3. Analysis Methodology

Following the analysis methods of the companion analysis in the Northern Sky [13], we will perform
two types of searches: a catalog and a stacking search.

Catalog Searches Here, we individually analyze each of the 14 sources in our selection for an
excess of point-like neutrino emission over backgrounds from atmospheric neutrinos, the diffuse
astrophysical neutrino flux [21, 22], and neutrinos from our own galaxy [14]. We also perform a
binomial test [23], a technique that allows us to combine, in a statistical manner, potential excess
neutrino emission from multiple sources in a relatively model-independent way, i.e., without having
to make any prior assumptions about the relative strength of the emission across the sources in
our catalog. Here, we are primarily interested in results assuming the disc-corona flux model, but
we will also perform the analysis assuming the canonical power-law flux to guard against model
miss-specifications and enable easier comparisons to other IceCube works.

Stacking Search Assuming all of our model assumptions, including the intrinsic X-ray fluxes
estimated in BASS, are correct, a stacking search, the joint analysis of all sources in which sources
are weighted according to their expected number neutrinos, provides the most statistical power in
identifying coronal neutrino emission from our set of sources. However, the increase in statistical
power over the binomial search comes at the cost of increased impact of systematic errors in our
model assumptions (or inputs). Because the strong X-ray emission of Cen A may be related to its jet
activity rather than coronal processes, we exclude this source from our stacking search. Otherwise,
this source would make the dominant contribution to this type of analysis, thereby propagating this
systematic uncertainty to the other sources in the stack. The stacking search is performed only for
the disc-corona model, i.e., the power-law flux is not tested in this part of our work.

All searches rely on the standard unbinned maximum likelihood formalism [1, 24], which considers
the reconstructed event directions and energies, as well as estimated per-event angular uncertainties
as the basis of the statistical method. While the generic power-law flux introduces two fit parameters,
the mean number of signal events 𝑛𝑠 and spectral index 𝛾, our disc-corona flux model (including all
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Figure 3: Expected numbers of events from the model (green stars) are compared with the 3𝜎 discovery
potentials (black dots). The four brightest sources, Cen A, Circinus Galaxy, NGC 7582, and ESO 138-1 are
highlighted.

assumptions) fully specifies the expected neutrino observations, and the model-based search could
therefore be performed without any free parameters. We acknowledge the existence of systematic
uncertainties in the estimated X-ray fluxes, especially for Compton-thick AGN, the estimated
source distances as well as other parameters intrinsic to the model. Changing, for example, the
assumed cosmic-ray to thermal pressure ratio [11], would change the normalization of the predicted
neutrino flux. For each source, we therefore treat the normalization, corresponding to 𝑛𝑠, as one
free parameter. In the stacking search, the total normalization is kept free, while the relative
contributions of the different sources are kept fixed at the nominal predictions.

Because we are analyzing the Southern Sky, we need to account for four types of backgrounds:
atmospheric muons, atmospheric neutrinos, astrophysical neutrinos, and neutrinos from the Milky
Way. The recent NGC 1068 result deployed MC simulations to model the backgrounds, because
it naturally avoids signal contamination in the background data, while at the same time being able
to fully sample the observable space [1]. Here, in the Southern Sky, systematic uncertainties in
the modeling of the muon background as well as its correlation with atmospheric neutrinos, the
so-called self-veto effect [25], prevent us from using the same method. Instead, we rely on the
well-tested data scrambling technique. Experimental data is randomized in the right ascension
coordinate, in which the detector response, as well as atmospheric and isotropic astrophysical
backgrounds, appear uniform. However, this is not true for Galactic neutrinos. In addition, the
technique suffers from signal contamination, as potential point-like neutrino emission would be
added to the background model, thereby reducing the sensitivity of the search. To alleviate both
issues, we modify the standard scrambling method as follows: we first apply a masking technique.
Events that fall into the vicinity of the brightest Seyfert galaxies (Cen A, Circinus, NGC 7582,
and ESO 138-1, circle of radius 7◦), or the Galactic plane (Galactic latitude ±10◦ ), are removed
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Figure 4: The 3𝜎 stacking discovery potential of the selected sources from the disk-corona model (black
solid), to be compared with the expected stacked flux (black dash-dotted). The measured diffuse astrophysical
fluxes of 𝜈𝜇 and 𝜈𝑒/𝜈𝜏 are also shown.

from the dataset. Scrambling the remaining data, while accounting for the missing solid angle,
then gives an excellent approximation to the atmospheric and diffuse astrophysical backgrounds.
Finally, we add simulated events from the Galactic plane into this hybrid dataset, using the best-fit
normalization reported in [14] for the neutrino flux expected from the diffuse galactic gamma-ray
flux (𝜋0 template) measured by Fermi-LAT [26]. Following [14], we assume the corresponding
neutrino flux to follow a power-law with a spectral index of 2.7. Using this hybrid dataset, we
obtain the background pdfs required by the likelihood formalism. It also allows us to generate
arbitrarily many background-only datasets but with strongly reduced signal contamination. The
latter is necessary to compute background test-statistics distributions, a crucial ingredient for the
likelihood ratio test. The original, unscrambled, unmasked experimental data is used to evaluate
the likelihood function on the experimental data during the data fitting process.

4. Projected Analysis Performance

We measure the performance of the analysis using the sensitivity and discovery potential as metrics.
The sensitivity is defined as the median value of the upper limits that the experiment could obtain
in a background-only universe. The discovery potential corresponds to the flux needed to make
a 5𝜎 discovery with 50 % probability. Because no analytic closed-form expression for the disc-
corona flux model exists, we will quote these metrics in units of the number of expected events.
A comparison between the sensitivity and discovery potential for individual objects in our catalog
search and the expected number of events according to the disc-corona model is shown in Fig. 3.
According to nominal model assumptions, identification of individual sources are not very likely.
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However, the collective neutrino emission could provide a strong signal for a stacking analysis. The
sensitivity and discovery potential of the stacking search are shown in Fig. 4. If all our assumptions
(e.g., the intrinsic X-ray fluxes by BASS, the disc corona model with intrinsic parameters tuned
to NGC 1068) are exactly met, the 3𝜎 discovery potential corresponds to 7.0 neutrinos (Cen A
excluded), i.e., ∼ 150 % of the expected neutrino flux.

5. Summary and Outlook

Motivated by the recently reported evidence for neutrino emission from the Seyfert galaxy NGC
1068 in the Northern Sky, and the fact that the majority of the bright Seyfert galaxies reside in
the Southern hemisphere, we have developed a search for neutrino emission from the intrinsically
brightest-in-X-ray (2 − 10 keV) Seyfert galaxies in the Southern Sky. This analysis offers new
opportunities to investigate neutrino emission from some of the primary candidates for IceCube’s
high-energy neutrino flux. The analysis uses starting track events in IceCube, while the selection
of sources rests on the information provided by BASS. According to the disc-corona model for
neutrino emission from AGN, the Circinus Galaxy is the most promising target in our search
because of its high intrinsic X-ray flux that is believed to originate from the corona of the AGN.
Because of the large atmospheric muon background in the Southern Sky, IceCube’s performance in
is reduced compared to the North, where the Earth shields the detector. Thus, a robust identification
of individual sources in our catalog with IceCube is challenging because the number of neutrinos
expected from each source is small. Combining possible signals using a likelihood-based stacking
method is more promising.
A closely related analysis, using essentially the same methods, has recently been applied to 27
X-ray bright Seyfert galaxies in the Northern Sky (excluding NGC 1068) [13]. While the data
for NGC 4151 and CGCG 420 − 015 appears inconsistent with background expectations at 2.7𝜎
significance, the stacking search constrains the model flux at the∼ 30 % level of the model prediction
in the optimistic scenario. The extent to which the properties of NGC 1068 within the disc-corona
model apply to the population of Seyfert galaxies therefore remains very much an open topic [13].
The work presented here focuses on a distinct set of sources and is thus bound to provide important
additional information about potential neutrino production mechanisms in AGN. By extending the
analysis presented here to also include IceCube cascade data [14] in the Southern Sky, we intend to
double the sensitivity of this search in future work.
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