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The traditional method of Gravitational Wave (GW) detection is Matched Filtering that was used
for the first GW detection by aLIGO in 2015. The method works by matching the observation
data sample with a set of templates of known GW waveforms. Iterating through all the templates
for relatively complex GW signals, for instance those from eccentric sources, increases the overall
computational cost and time complexity. In recent years, Machine Learning techniques have been
probed as a solution to this problem. In this short paper, we present a new Convolutional Neural
Network model for detection of GW signals from Neutron Star−Black Hole (NSBH) binaries in
Gaussian random noise. We use NSBH signals simulated using IMRPhenomNSBH LALsuite
waveform approximant for training the model. We then compare the model detection sensitivities
for three different training strategies obtained by combining Uniform and Non-uniform Signal-to-
Noise distribution in the training dataset with the Curriculum Learning training methodology. We
find that two of the training strategies perform considerably better than the other one for all test
datasets considered.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:gargsuyog@g.ecc.u-tokyo.ac.jp
mailto:sasaoka@gw.phys.titech.ac.jp
mailto:diego@gw.phys.titech.ac.jp
mailto:elon@gw.phys.titech.ac.jp
mailto:f22l004a@mail.cc.niigata-u.ac.jp
mailto:somiya@phys.titech.ac.jp
mailto:hirotaka@tcu.ac.jp
mailto:ohashi@icrr.u-tokyo.ac.jp
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
3
6

CNN model training comparison for NSBH GW detection Suyog Garg

1. Introduction

Gravitational Waves (GW) are ripples in the fabric of spacetime caused by spherically non-
symmetric motion of a body of mass. The GW signals are extremely weak and just the ones created
by astrophysical processes are strong enough to be detected on Earth. They are also the only
possible way of observing the very early Universe, since it is opaque to electromagnetic radiation.
Gravitational Waves are a robust prediction of the General Theory of Relativity formulated by
Einstein in 1915. However, it was only the development of large-scale laser interferometry based
GW detectors in the last decades of the 20th century, that paved the way for direct observations of
Gravitational Waves. Three such ground based laser interferometric GW observatories are currently
in operation: advanced LIGO (Hanford and Livingston), advanced Virgo and KAGRA. Advanced
LIGO performed the first direct detection of Gravitational Waves by the 2015 detection of the
GW150914 signal originating from the merger of two Black Holes [1]. This phenomenal detection
ushered in the era of Gravitational Wave Astronomy. Since then around 100 such signals have been
detected by the advanced LIGO and the advanced Virgo.

A well-established method for Gravitational Wave detection is the matched filtering technique
that was used for the GW150914 signal detection. The matched filtering technique involves
convolving the detector data with samples from a pre-calculated template bank containing a set of
expected Gravitational Wave signal waveforms. The Gravitational Wave templates are
mathematically generated by altering parameter values describing the source of
Gravitational Waves, for instance, their mass, spin and orientation. Traditional matched filtering
based algorithms are the most sensitive methods for Gravitational Wave detection. However, they
require a large execution time as the size of the template bank increases. This is especially true
when the GW signals contain effects like higher-order modes, precession and orbital eccentricity
at the source.

To counter these shortcomings of the matched filtering method, Machine Learning based
techniques for GW detection have been gaining momentum in recent years. Machine Learning is a
field of Artificial Intelligence devoted to developing models that “learn” to efficiently perform any
particular task. The “learning” happens by training the model on a set of training data, so that it can
make predictions on another similar set of test data. The models train to make accurate predictions
by optimizing a model critical function through a supervised or unsupervised learning approach.

The first application of Machine Learning in GW science was done by George and Huerta [3].
They demonstrated that Machine Learning can really be useful for GW detection and parameter
estimation. Since then several studies have further been done to assess the feasibility of using
Machine Learning techniques for detection of Gravitational Waves. In this short article, we present
a new Convolutional Neural Network (CNN) for detection of GWs from Neutron Star−Black Hole
binary sources. We also make a comparison between different training strategies used for training
the model. In Section 2.1, we lay out our CNN model architecture. Next in Section 2.2, we describe
how the training and test data for the model is generated and processed. Then in explain the
Section 2.3, the Curriculum Learning training methodology and three different training strategies
that are used for model training. Finally, in Section 3 we present our results from the model testing
on test datasets and discuss possible future research directions.
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2. Model Training

2.1 Network Architecture

We use a simple Residual network architecture for our Convolutional Neural Network model
for detection of Gravitational Waves from Neutron Star–Black Hole binary sources. The network
consists of four Residual blocks, each of which contain one Convolutional layer and one Max
Pooling layer. The Residual blocks are followed by a flattening layer, which are then followed by
three dense layers. The input to the network is a GW time series (the input dimension 2 corresponds
to the 2 detectors used to generate the training data). The output of the network is an array of length
two, corresponding to the label: Signal or No-Signal. The network architecture of our model is
outlined in Figure 1. Additionally, Table 1 tabulates the output shape and the number of parameters
in each layer of the network.

Figure 1: Network architecture of the Convolutional Neural Network model Gravitational Wave detection
from Neutron Star–Black Hole binary sources. The network consists of four Residual blocks, each containing
one Convolutional and one Max Pooling layer. The output shape at each block is also shown. The input to
the network is a Gravitational Wave time series on the left, while the output of the network is the label (signal
or no-signal) on the right.

2.2 Training Data

To create the training samples for the Neutron Star–Black Hole model (Figure 1), we use the
IMRPhenomNSBH waveform approximant available via PyCBC. The IMRPhenomNSBH
approximant includes tidal (on the Neutron Star component of the binary), spin and precession
effects into the modelling of the waveform. Incorporating tidal effects within the equations
describing the evolution of the system is important for Neutron Star–Black Hole mergers,
especially for large mass ratio binaries [4]. Using this approximant, we generate
Neutron Star–Black Hole GW signal waveforms the two advanced LIGO detectors, H1 and L1.
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Table 1: Model parameters for the Convolutional Neural Network network used for Gravitational Wave
detection from Neutron Star–Black Hole binary sources. The network consists of four Residual blocks, each
containing one Convolutional and one Max Pooling layer. The full network architecture is shown in Figure 1.

Layer (type) Output Shape Param #
batch_normalization (BatchNormalization) (None, 1, 2, 16384) 65536
conv2d (Conv2D) (None, 64, 2, 16369) 1088
max_pooling2d (MaxPooling2D) (None, 64, 1, 4092) 0
conv2d_1 (Conv2D) (None, 128, 1, 4062) 131200
max_pooling2d_1 (MaxPooling2D) (None, 128, 1, 1015) 0
conv2d_2 (Conv2D) (None, 256, 1, 985) 524544
max_pooling2d_2 (MaxPooling2D) (None, 256, 1, 246) 0
conv2d_3 (Conv2D) (None, 512, 1, 184) 4194816
max_pooling2d_3 (MaxPooling2D) (None, 512, 1, 46) 0
flatten (Flatten) (None, 23552) 0
dense (Dense) (None, 128) 3014784
dense_1 (Dense) (None, 64) 8256
dense_2 (Dense) (None, 2) 130
Total params 7,940,354
Trainable params 7,907,586
Non-trainable params 32,768

The signals are generated for a total duration of 4.25 sec and are sampled at 4096 Hz. Signals of
longer duration are required because the inspiral time for Neutron Star–Black Hole is much longer
than that of Binary Black Hole, since the binary component masses have a larger difference. Then
to create training samples with signals embedded in noise, we add Gaussian random noise to these
generated signal waveforms. Based on the training requirements, some pure Gaussian noise
samples are also generated. All these generated samples are then whitened using the
aLIGOZeroDetHighPower PSD to match the actual detector power spectrum. After whitening the
sample duration gets reduced to 4.0 sec. The left panels on Figure 2 illustrates some representative
training samples used in our analysis.

For our model we use two different Signal-to-Noise (SNR) distributions in the training data,
namely: Uniform and Non-Uniform SNR distributions. For each of our SNR distributions in the
training data, we generate the waveforms for a Black Hole mass range of 𝑚1 = 5 − 20𝑀⊙ and a
Neutron Star mass range of 𝑚2 = 1 − 2𝑀⊙. The Uniform SNR distribution is the Gaussian random
process, where the probability of occurrence of different variables is the same. This is shown on
the top right panel in Figure 2. George and Huerta [3] also use the Uniform SNR distribution for
training their model.

LIGO observations till date have been around SNR ∼ 6. So, having more number of training
samples with SNR in this neighbourhood will be preferable. That’s idea behind using a Non-uniform
SNR distribution. Qiu et al. [5] use a truncated triangular SNR distribution with left=3, mode=5
and right=27.5. Whereas, George and Huerta [3] used Curriculum learning technique by training
with large SNR samples first, while the samples were uniformly sampled from a uniform SNR
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Figure 2: Left: A representative Neutron Star–Black Hole Gravitational Wave signal waveform used for
training our model. The waveforms are generated using the IMRPhenomNSBH waveform approximant
available via PyCBC. Right: Two Signal-to-Noise (SNR) ratio distributions in the training data used for
training our model. The distribution in the Top has the number of samples uniformly sampled for all SNR
and corresponds to the “Uniform SNR distribution". The distribution in the bottom plot is the “Non-uniform
SNR distribution" taken from [5].

distribution of the training data. We use the Qiu et al. [5] SNR distribution as our Non-uniform
SNR distribution. This distribution is shown on the bottom right panel in Figure 2.

2.3 Curriculum Learning and Training Strategies

There can be a number of different methods to train a Convolutional Neural Network model.
Curriculum Learning is a well-known training methodology used for Convolutional Neural
Networks to improve their model accuracy during training with complex datasets. The
Curriculum Learning training methodology was first introduced by Bengio et al. [2] in their,
“Discussing merits and demerits of various training methodologies for Artificial Neural
Networks". In the field of GW science, Curriculum Learning has been used for Machine Learning
applications to Binary Black Hole GW detections. The methodology has been found to increase
the sensitivity (and accuracy) of the model for data samples containing a GW signal at low SNR
[3].

The key idea of Curriculum Learning is to train a Convolutional Neural Network model by
gradually increasing in the complexity of the training data. For the Gravitational Wave data, a
simple data sample corresponds to the sample with a high SNR, while a more complex data is the
one with the signal at low SNR. Thus, when using the Curriculum Learning training methodology,
we first train the model with high SNR samples and follow this by using samples at lower SNRs in
gradual steps. The full Curriculum Learning algorithm used for our model is laid out in Algorithm
1 below.
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Algorithm 1 The Curriculum Learning Algorithm
Generate pure signals strains for 𝑚BH ∈ (5, 20) 𝑀⊙ and 𝑚NS ∈ (1, 2) 𝑀⊙
for 𝑘 ∈ [20.0, 16.0, 13.5, 12.0, 9.0, 7.5, 6.0, 4.0, 3.0, 2.0, 1.5, 1.0] do

if distro = uniformSNRdistro then
snr← random(uniformSNRdistro(5,15))

else
snr← random(quiSNRdistro())

end if
target_strain← strain × ( snr × 𝑘) / network_snr
sample← noise + target_strain ⊲ whiten sample

end for
Test trained model with test dataset having snr ∈ (17, 2,−0.5)

For our model we use three different training strategies obtained by combining the Uniform
and Non-uniform SNR distributions with the Curriculum Learning training methodology. These
strategies are: Uniform SNR distribution with Curriculum Learning, Non-uniform SNR distribution
without Curriculum Learning and Non-uniform distribution with Curriculum Learning.

3. Results

We use identical training datasets for each of our training strategies. The datasets differ only in
the randomly generated noise profiles. The number of training samples is fixed at 50,000 samples,
out which 25% samples only contain pure noise. The remaining samples have GW signal waveforms
embedded in the Gaussian random noise. We train the model for a total of 10 training epochs with
a batch size of 50. For the learning rate 𝛼, we follow a schedule of 𝛼 = 10−3 for epochs 1 − 5 and
𝛼 = 𝛾 × 10−3 for the remaining epochs, where 𝛾 = 0.1 for epochs 5 − 7 and 𝛾 = 0.01 for epochs
7 − 10.

Once the model has finished training, we test the model on test datasets for signals at different
SNRs. We generate the test datasets with test SNRs in the range 1 to 17 with a step-size of 0.5. The
results for testing the model training for each of our training strategies are presented in Figure 3,
in the form of a SNR versus Sensitivity (and Accuracy) curves. To calculate the Sensitivity and
Accuracy we use a fixed False Alarm Rate value (FAR) of FAR = 0.06, which is a reasonable
threshold for the detections.

Figure 3 plots the model Sensitivity (left panel) and Accuracy (right panel) versus SNR
curves for the three training strategies considered in this study. It is clearly seen that both the
training strategies with Curriculum Learning perform equally well for the Neutron Star–Black Hole
GW detection in Gaussian noise. However, when Curriculum Learning is not used we find a
substantial decline in the Sensitivity and Accuracy of the model. The Uniform SNR distribution
with Curriculum Learning model obtains more than 90% Sensitivity and Accuracy at SNR >= 12.
The Sensitivity attains near saturation at SNR > 14. On the other hand, the Non-uniform SNR
distribution without Curriculum Learning model performs significantly worse as compared to the
Uniform SNR distribution with Curriculum Learning case. This model obtains more than 90%
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Figure 3: Comparison of model Sensitivity (left) and Accuracy (right) at different SNR values for the three
training strategies. Curriculum Learning is seen to perform the best regardless of the SNR distribution of the
data.

Sensitivity and Accuracy at SNR >= 12, while the Sensitivity attains saturation at all SNR > 14.
The performance of the Non-uniform SNR distribution with Curriculum Learning model is similar
to the Uniform SNR distribution with Curriculum Learning model, with more than 90% Sensitivity
and Accuracy at SNR >= 12 and saturation at SNR > 14.

In the fourth LIGO-Virgo-KAGRA observation run that commenced in May 2023, the best
expected SNR for GW detections is at SNR = 8.1 Around this SNR, both the training strategies
that follow Curriculum Learning training methodology perform better than the one without it, even
though the Sensitivity is only around 30%. If the FAR constraint is relaxed, say to have FAR
= 1, better Sensitivity and Accuracy at low SNR will be achieved, but at the expense of more
number of false alarms. Further, the Curriculum Learning strategies reache close to saturation,
that is all ≥ 90% signals are detected, after SNR = 12, whereas the training strategy without
Curriculum Learning reaches similar Sensitivity at SNR = 14 and beyond. It also be noted that
Curriculum Learning with Non-Uniform SNR distribution requires almost 5 times more running
time as compared to the other training strategies.

Our main result is that Curriculum Learning improves the model Sensitivity regardless of the
SNR distribution in the training data. This has clear implications for training future
Machine Learning based methods for detection of GW signals in noisy data. Our future work will
focus on detection GW signals embedded in real detector noise. We shall continue to use the
Curriculum Learning methodology for training the model. Real noise data from O3 observation
run can be obtained from the Gravitational Wave Open-Science Center
https://www.gw-openscience.org/O3/O3b/ data files by selecting the time range in which
no events were observed.

1See: https://emfollow.docs.ligo.org/userguide/capabilities.html

7

https://www.gw-openscience.org/O3/O3b/


P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
3
6

CNN model training comparison for NSBH GW detection Suyog Garg

Acknowledgments

This research was supported in part by JSPS Grant-in-Aid for Scientific Research [No.
22H01228 (K. Somiya), and Nos. 19H01901, 23H01176 and 23H04520 (H. Takahashi)]. This
research was also supported by the Joint Research Program of the Institute for Cosmic Ray
Research, University of Tokyo and Tokyo City University Prioritized Studies. This research has
made use of data or software obtained from the Gravitational Wave Open Science Center
(gwosc.org), a service of the LIGO Scientific Collaboration, the Virgo Collaboration, and
KAGRA. This material is based upon work supported by NSF’s LIGO Laboratory which is a
major facility fully funded by the National Science Foundation, as well as the Science and
Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS),
and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and
construction and operation of the GEO600 detector. Additional support for Advanced LIGO was
provided by the Australian Research Council. Virgo is funded, through the European Gravitational
Observatory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian
Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by
institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal,
Spain. KAGRA is supported by Ministry of Education, Culture, Sports, Science and Technology
(MEXT), Japan Society for the Promotion of Science (JSPS) in Japan; National Research
Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea; Academia Sinica (AS) and
National Science and Technology Council (NSTC) in Taiwan.

References

[1] B. P. Abbott, R. Abbott, T. D. Abbott, et al. Observation of gravitational waves from a binary
black hole merger. Phys. Rev. Lett., 116:061102, Feb 2016. URL https://link.aps.org/
doi/10.1103/PhysRevLett.116.061102.

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings
of the 26th Annual International Conference on Machine Learning. ACM, jun 2009. URL
https://doi.org/10.1145%2F1553374.1553380.

[3] D. George and E. A. Huerta. Deep neural networks to enable real-time multimessenger
astrophysics. Phys. Rev. D, 97:044039, Feb 2018.

[4] J. E. Thompson, E. Fauchon-Jones, S. Khan, et al. Modeling the gravitational wave signature
of neutron star black hole coalescences: Phenomnsbh. LIGO-P2000059, 02 2020. URL
https://arxiv.org/pdf/2002.08383.pdf.

[5] R. Qiu, P. Krastev, K. Gill, and E. Berger. Deep Learning Detection and Classification
of Gravitational Waves from Neutron Star-Black Hole Mergers. arXiv e-prints, page
arXiv:2210.15888, Oct. 2022, 2210.15888.

8

https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://doi.org/10.1145%2F1553374.1553380
https://arxiv.org/pdf/2002.08383.pdf

	Introduction
	Model Training
	Network Architecture
	Training Data
	Curriculum Learning and Training Strategies

	Results

