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A gauge-invariant perturbation theory on a generic background spacetime is developing from
2003 and “zero-mode problem” for linear metric perturbations was proposed as the essential
problem of this theory. In the perturbation theory on the Schwarzschild background spacetime,
l = 0,1 modes correspond to the above “zero-mode” and the gauge-invariant treatments of these
modes is a famous non-trivial problem in perturbation theories on the Schwarzschild background
spacetime. Due to this situation, a gauge-invariant treatment for these l = 0,1-mode perturbations
is proposed. Through this gauge-invariant treatment, the solutions to the linearized Einstein equa-
tion for these modes with a generic matter field are derived. In the vacuum case, the linearized
version of uniqueness theorem of Kerr spacetime is confirmed in a gauge-invariant manner. In
this sense, our proposal is reasonable.
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1. Introduction ———- From the direct observation of gravitational waves [1], in 2015, the
gravitational-wave astronomy and multi-messenger astronomy including gravitational waves be-
gan. One of future directions of gravitational-wave astronomy is the development as a precise
science by the detailed studies of source science and the tests of general-relativity. To support such
precise sciences, higher-order perturbation theories in general relativity are useful.

Among future targets of gravitational-wave sources, the Extreme-Mass-Ratio-Inspiral (EMRI)
is one of the targets of the Laser Interferometer Space Antenna [2]. The EMRI is a source of
gravitational waves, which is the motion of a stellar mass object around a supermassive black
hole, and black hole perturbation theories are used to describe this EMRI. Therefore, theoretical
sophistications of black hole perturbation theories and their higher-order extensions are necessary.

Although realistic black holes have their angular momentum and we must consider the per-
turbation theory of a Kerr black hole for direct applications to the EMRI, further sophistication is
possible even in perturbation theories on the Schwarzschild spacetime. Based on the pioneering
works by Regge and Wheeler, and Zerilli [3], there have been many studies on the perturbations of
the Schwarzschild spacetime. Because the Schwarzschild spacetime has the spherical symmetry,
we decompose perturbations through the spherical harmonics Ylm and classify them into odd- and
even-modes based on their parity. However, l = 0 and l = 1 modes should be separately treated, and
“gauge-invariant” treatments for l = 0 and l = 1 even-modes remain unknown.

In this situation, we proposed a gauge-invariant treatment of l = 0,1-modes and derived the
solutions to the linearized Einstein equations for these modes [4]. The obtained solutions [4] are
physically reasonable. For this reason, we may say that our proposal is also reasonable. In addition,
owing to our proposal, the formulation of higher-order gauge-invariant perturbation theory devel-
oped in [5–7] becomes applicable to any-order perturbations on the Schwarzschild background
spacetime [8]. In this manuscript, we briefly explain these issues.

2. Brief review of general-relativistic gauge-invariant perturbation theory ———- General
relativity is a theory based on general covariance, and that covariance is the reason that the notion
of “gauge” has been introduced into the theory. In particular, in general relativistic perturbations,
the second-kind gauge appears in perturbations [9]. In general-relativistic perturbation theory, we
usually treat the one-parameter family of spacetimes {(Mλ ,Qλ )|λ ∈ [0,1]} to discuss differences
between the background spacetime (M ,Q0) = (Mλ=0,Qλ=0) and the physical spacetime (Mph, Q̄)
= (Mλ=1,Qλ=1). Here, λ is the infinitesimal parameter for perturbations, Mλ is a spacetime
manifold for each λ , and Qλ is the collection of the tensor fields on Mλ . Since each Mλ is a
different manifold, we have to introduce the point identification map Xλ : M →Mλ to compare
tensor fields on different manifolds. This point-identification is the gauge choice of the second kind.
Since we have no guiding principle by which to choose identification map Xλ due to the general
covariance, we may choose a different point-identification Yλ from Xλ . This degree of freedom
in the gauge choice is the gauge degree of freedom of the second kind. The gauge-transformation
of the second kind is a change of this identification map. We note that this second-kind gauge is
a different notion of the degree of freedom of coordinate choices on a single manifold, which is
called the gauge of the first kind [9].

Once we introduce the second-kind gauge choice Xk : M →Mλ , we can compare the tensor
fields on different manifolds {Mλ}, and perturbations of a tensor field Qλ are represented by the
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difference X ∗
λ

Qλ −Q0, where X ∗
λ

is the pull-back induced by the gauge choice Xλ and Q0 is the
background value of the variable Qλ . This representation of perturbations completely depends on
Xλ . If we change the gauge choice from Xλ to Yλ , the pulled-back variable of Qλ is represented
by Y ∗

λ
Qλ . These different representations are related through the gauge-transformation rule

Y ∗
λ

Qλ = Φ
∗
λ
X ∗

λ
Qλ , Φλ :=X −1

λ
◦Yλ . (1)

Φλ is a diffeomorphism on the background spacetime M .
In the perturbative approach, we treat the perturbations of the pulled-back variable X ∗

λ
Qλ

through the Taylor series with respect to the infinitesimal parameter λ as

X ∗
λ

Qλ =:
k

∑
n=0

λ n

n!
(n)
X Q+O(λ k+1), (2)

where (n)
X Q is the representation of the kth-order perturbation of Qλ under Xλ with (0)

X Q = Q0.
Similarly, we can have the representation of the perturbation of Qλ under the different gauge

choice Yλ from Xλ . Since these different representations are related to the gauge-transformation
rule (1), the order-by-order gauge-transformation rule between (n)

X Q and (n)
Y Q is given from the

Taylor expansion of Eq. (1). In general, Φλ is given by a knight diffeomorphism [5]: Let Φλ be a
one-parameter family of diffeomorphisms, and T a tensor field such that Φ∗

λ
T is of class Ck. Then,

Φ∗
λ

T can be expanded around λ = 0 as

Φ
∗
λ

T =
k

∑
n=0

λ
n

∑
{ ji}∈Jn

Cn,{ ji}£
j1
ξ(1)
· · ·£ jn

ξ(n)
T +O(λ k+1). (3)

Here, Jn :=
{
{ ji}|∀i ∈ N, ji ∈ N,s.t.∑∞

i=1 i ji = n
}

and Cn,{ ji} :=
n

∏
i=1

1
(i!) ji ji!

. The vector fields ξ(1),

..., ξ(k) in Eq. (3) are called the generators of Φλ .
Substituting Eqs. (2) and (3) into Eq. (1), we obtain the order-by-order gauge-transformation

rules between (n)
X Q and (n)

Y Q as

(n)
Y Q− (n)

X Q =
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{Ji}£
j1
ξ(1)
· · ·£ jl

ξ(l)

(n−l)
X Q. (4)

Inspecting the gauge-transformation rule (4), we first defined gauge-invariant variables for
metric perturbations [5]. We consider the metric ḡab on (Mph, Q̄) = (Mλ=1,Qλ=1), and we expand
the pulled-back metric X ∗

λ
ḡab to M through a gauge choice Xk as

Xλ ḡab =
k

∑
n=0

λ n

n!
(n)
X gab+O(λ k+1), (5)

where gab := (0)
X gab is the metric on M . The expansion (5) of the metric depends entirely on Xλ .

Nevertheless, henceforth, we do not explicitly express the index of the gauge choice Xλ if there is
no possibility of confusion. In [5], we proposed a procedure to construct gauge-invariant variables
for higher-order perturbations. Our starting point of this construction was the following conjecture
for the linear metric perturbation hab := (1)gab:
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Conjecture 1. If the gauge-transformation rule for a pulled-back tensor field hab from Mph to M

is given by Y hab − X hab = £ξ(1) gab with the metric gab on M , there then exist a tensor field Fab and
a vector field Y a such that hab is given by hab =: Fab + £Y gab, where Fab and Y a are transformed
as Y Fab − XFab = 0 and YY a − XY a = ξ a

(1) under the gauge transformation, respectively.

We call Fab and Y a as the gauge-invariant and gauge-variant parts of hab, respectively.
Based on Conjecture 1, in [7], we found that the nth-order metric perturbation (n)

X gab is decom-
posed into its gauge-invariant and gauge-variant parts as 1

(n)gab = (n)Fab−
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£
j1
−(1)Y · · ·£

jl
−(l)Y

(n−l)gab. (6)

Furthermore, through the gauge-variant variables (i)Y a (i = 1, ...,n), we also found the definition of
the gauge-invariant variable (n)Q for the nth-order perturbation (n)Q of an arbitrary tensor field Q.
This definition of the gauge-invariant variable (n)Q implies that the nth-order perturbation (n)Q of
any tensor field Q is always decomposed into its gauge-invariant part and gauge-variant part as

(n)Q = (n)Q−
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£
j1
−(1)Y · · ·£

jl
−(l)Y

(n−l)Q. (7)

For example, the perturbative expansion of the Einstein tensor and the energy-momentum
tensor, which are pulled back through Xλ , are given by

X ∗
λ

Ḡ b
a =

k

∑
n=0

λ n

n!
(n)
X G b

a +O(λ k+1), X ∗
λ

T̄ b
a =

k

∑
n=0

λ n

n!
(n)
X T b

a +O(λ k+1). (8)

Then, the nth-order perturbation (n)
X G b

a of the Einstein tensor and the nth-order perturbation (n)
X T b

a

of the energy-momentum tensor are also decomposed as

(n)G b
a = (n)G b

a −
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£
j1
−(1)Y · · ·£

jl
−(l)Y

(n−l)G b
a , (9)

(n)T b
a = (n)T b

a −
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£
j1
−(1)Y · · ·£

jl
−(l)Y

(n−l)T b
a . (10)

Through the lower-order Einstein equation (k)
X G b

a = 8π
(k)
X T b

a 2 with k≤ n−1, the nth-order Einstein
equation (n)

X G b
a = 8π

(n)
X T b

a is automatically given in the gauge-invariant form

(n)G b
a =

(1)G b
a
[(n)F

]
+ (NL)G b

a
[{ (i)F

∣∣ i < n
}]
= 8π

(n)T b
a , (11)

where (1)G b
a is the gauge-invariant part of the linear-order perturbation of the Einstein tensor.

Explicitly, (1)G b
a [A] for an arbitrary tensor field Aab of the second rank is given by [5]

(1)G b
a [A] := (1)

Σ
b

a [A]− 1
2

δ
b

a
(1)
Σ

c
c [A] , (12)

(1)
Σ

b
a [A] :=−2∇[aH bd

d] [A]−AcbRac, H c
ba [A] := ∇(aA c

b) −
1
2

∇
cAab. (13)

1 Precisely speaking, to reach to the decomposition formula (6), we have to confirm Conjecture 4.1 in Ref. [7] in
addition to Conjecture 1.

2 We use the unit G = c = 1, where G is Newton’s constant of gravitation, and c is the velocity of light.
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As derived in [5], when the background Einstein tensor vanishes, we obtain the identity ∇a
(1)G a

b [A]
= 0 for an arbitrary tensor field Aab of the second rank.

We emphasize that Conjecture 1 was the important premise of the above framework of the
higher-order perturbation theory.

3. Linear perturbations on spherically symmetric background ———- We use the 2+2 for-
mulation of the perturbations on spherically symmetric spacetimes. The topological space of spher-
ically symmetric spacetimes is M =M1×S2, and the metric on this spacetime is

gab = yab+ r2
γab, yab = yAB(dxA)a(dxB)b, γab = γpq(dxp)a(dxq)b, (14)

where xA = (t,r), xp = (θ ,φ ), and γpq is a metric of the unit sphere. In the Schwarzschild spacetime,
yab =− f (dt)a(dt)b+ f−1(dr)a(dr)b with f = 1−2M/r.

On this (M ,gab), we consider the components of the metric perturbation as

hab = hAB(dxA)a(dxB)b+2hAp(dxA)(a(dxp)b) +hpq(dxp)a(dxq)b. (15)

In Ref. [4], we proposed the decomposition of these components as

hAB =∑
l,m

h̃ABSδ , hAp = r∑
l,m

[
h̃(e1)AD̂pSδ + h̃(o1)AεpqD̂qSδ

]
, (16)

hpq = r2
∑
l,m

[
1
2

γpqh̃(e0)Sδ + h̃(e2)

(
D̂pD̂q−

1
2

γpq∆̂

)
Sδ +2h̃(o2)εr(pD̂q)D̂rSδ

]
, (17)

where D̂p is the covariant derivative associated with the metric γpq on S2, D̂p := γ pqD̂q, and εpq =

ε[pq] is the totally antisymmetric tensor on S2.
The decomposition (16)–(17) implicitly state that the Green functions of the derivative oper-

ators ∆̂ := D̂rD̂r and ∆̂+ 2 := D̂rD̂r + 2 should exist if we require the one-to-one correspondence
between {hAp, hpq} and {h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)}. Because the eigenvalue of the operator
∆̂ on S2 is−l(l+1), the kernels of the operators ∆̂ and ∆̂+2 are l = 0 and l = 1 modes, respectively.
Thus, the one-to-one correspondence between {hAp, hpq} and {h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)}
is not guaranteed for l = 0,1 modes in Eqs. (16)–(17) with Sδ = Ylm. To recover this one-to-one
correspondence, we consider the scalar harmonics [4]

Sδ =
{

Ylm for l ≥ 2; k(∆̂+2)m for l = 1; k(∆̂) for l = 0
}
. (18)

As the explicit functions of k(∆̂) and k(∆̂+2)m, we employ

k(∆̂) = 1+δ ln
(

1− z
1+ z

)1/2

, k(∆̂+2)m=0 = z+δ

(
z
2

ln
1+ z
1− z

−1
)
, (19)

k(∆̂+2)m=±1 = (1− z2)1/2
{

1+δ

(
1
2

ln
1+ z
1− z

+
z

1− z2

)}
e±iφ , (20)

where δ ∈ R and z = cosθ . This choice guarantees the linear-independence of the set{
Sδ , D̂pSδ ,εpqD̂qSδ ,

1
2

γpqSδ ,

(
D̂pD̂q−

1
2

γpq∆̂

)
Sδ ,2εr(pD̂q)D̂rSδ

}
(21)

of the harmonic functions including l = 0,1 modes if δ , 0, but is singular if δ , 0. On the other
hand, when δ = 0, we have k(∆̂) ∝ Y00 and k̂(∆̂+2)m ∝ Y1m.

Through the above harmonics functions Sδ , in Ref. [4], we proposed the following strategy:

5
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Proposal 1. We decompose the metric perturbations hab on the background spacetime with the
metric (14), through Eqs. (16)–(17) with the harmonic functions Sδ given by Eq. (18). After deriv-
ing the mode-by-mode field equations such as linearized Einstein equations using Sδ , we choose
δ = 0 when we solve these field equations as the regularity of solutions.

Once we accept Proposal 1, we can justify Conjecture 1 for the linear-order perturbation hab on
spherically symmetric background spacetimes [4]. Then, we showed that above our formulation of
a gauge-invariant perturbation theory is applicable to perturbations on the Schwarzschild spacetime
including l = 0,1 modes, and derived the l = 0,1 solutions to the linearized Einstein equation [4].

From Eq. (11), the linearized Einstein equation (1)G b
a = 8π (1)T b

a for hab =Fab + £Y gab with
the vacuum background Einstein equation G b

a = 8πT b
a = 0 is given by

(1)G b
a [F ] = 8π

(1)T b
a , (22)

and the linear-order continuity equations of the energy-momentum tensor is given by

∇
a (1)T b

a = 0. (23)

We decompose the components of the linear perturbation of (1)Tac as

(1)Tac =∑
l,m

T̃ACSδ (dxA)a(dxC)c+2r∑
l,m

{
T̃(e1)AD̂pSδ + T̃(o1)AεpqD̂qSδ

}
(dxA)(a(dxp)c)

+r2
∑
l,m

{
T̃(e0)

1
2

γpqSδ + T̃(e2)

(
D̂pD̂q−

1
2

γpq∆̂

)
Sδ + T̃(o2)εs(pD̂q)D̂sSδ

}
(dxp)a(dxq)c.(24)

Since we impose δ = 0 after deriving mode-by-mode perturbative Einstein equations, we may
choose T̃(e2) = T̃(o2) = 0 for l = 0,1 modes, and T̃(e1)A = 0 = T̃(o1)A for l = 0 modes. This choice and
Eq. (23) leads T̃(e0) = 0 for l = 0 mode. Then, we derived the l = 0,1-mode solutions to Eq. (22) [4]:

For l = 1 m = 0 odd-mode perturbations, we derived

2(1)FAp(dxA)(a(dxp)b)=

(
6Mr2

∫
dr

1
r4 a1(t,r)

)
sin2

θ (dt)(a(dφ )b) +£V(1,o1) gab, (25)

V(1,o1)a=
(
β1(t)+W(1,o) (t,r)

)
r2 sin2

θ (dφ )a. (26)

Here, β1(t) is an arbitrary function of t. The function a1(t,r) is the solution to Eq. (22) given by

a1(t,r) =−16π

3M
r3 f

∫
dtT̃(o1)r +a10 =−

16π

3M

∫
drr3 1

f
T̃(o1)t +a10, (27)

where a10 is the constant of integration which corresponds to the Kerr parameter perturbation. On
the other hand, r f ∂rW(1,o) of the variable W(1,o) in Eq. (26) is determined by the evolution equation

∂
2
t (r f ∂rW(1,o))− f ∂r ( f ∂r (r f ∂rW(1,o))+

1
r2 f [3 f −1] (r f ∂rW(1,o)) = 16π f 2T̃(o1)r. (28)

For the l = 0 even-mode perturbation, we have

(1)Fab =
2
r

(
M1+4π

∫
dr
[

r2

f
T̃tt

])(
(dt)a(dt)b+

1
f 2 (dr)a(dr)b

)
+2
[

4πr
∫

dt
(

1
f

T̃tt + f T̃rr

)]
(dt)(a(dr)b) +£V(1,e0) gab, (29)

V(1,e0)a :=
(

1
4

fΥ1+
1
4

r f ∂rΥ1+ γ1(r)
)

(dt)a+
1

4 f
r∂tΥ1(dr)a, (30)

6
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where M1 is the linear-order Schwarzschild mass parameter perturbation, γ1(r) is an arbitrary func-
tion of r. The variable (1)F̃ := ∂tΥ1 in the generator (30) satisfies the following equation:

−1
f

∂
2
t F̃ +∂r ( f ∂rF̃ )+

1
r2 3(1− f )F̃ =− 8

r3 m1(t,r)+16π

[
−1

f
T̃tt + f T̃rr

]
, (31)

where

m1(t,r) = 4π

∫
dr
[

r2

f
T̃tt

]
+M1 = 4π

∫
dt
[
r2 f T̃rt

]
+M1, M1 ∈ R. (32)

For the l = 1 m = 0 even-mode perturbation, we have

(1)Fab =
16πr2

1− f

{
− f 2

3

[
1+ f

2
T̃rr + r f ∂rT̃rr− T̃(e0)−4T̃(e1)r

]
(dt)a(dt)b

+

[
(1− f )T̃tr−

2r
3 f

∂t T̃tt

]
(dt)(a(dr)b) +

1−3 f
2 f 2

[
T̃tt −

2r f
3(1−3 f )

∂rT̃tt

]
(dr)a(dr)b

−r2T̃tt

3
γab

}
cosθ +£V(1,e1) gab, (33)

V(1,e1)a :=−r∂tΦ(e) cosθ (dt)a+
(
Φ(e)− r∂rΦ(e)

)
cosθ (dr)a− rΦ(e) sinθ (dθ )a, (34)

where Φ(e) satisfies the following equation

−1
f

∂
2
t Φ(e) +∂r [ f ∂rΦ(e)]−

1− f
r2 Φ(e) = 16π

r
3(1− f )

S(Φ(e) ),

S(Φ(e) ) :=
3(1−3 f )

4 f
T̃tt −

1
2

r∂rT̃tt +
1+ f

4
f T̃rr +

1
2

f 2r∂rT̃rr−
f
2

T̃(e0)−2 f T̃(e1)r. (35)

4. Extension to the higher-order perturbations ———- As shown in Sec. 2, the n-th order
Einstein equation is given in Eq. (11), which we rewrite as

(1)G b
a
[(n)F

]
=−(NL)G b

a
[{ (i)Fcd

∣∣ i < n
}]
+8π

(n)T b
a =: 8π

(n)T b
a . (36)

Here, the left-hand side in Eq. (36) is the linear term of (n)Fab and the first term in the right-
hand side is the non-linear term consists of the lower-order metric perturbation (i)Fab with i < n.
The right-hand side 8π (n)T b

a of Eq. (36) is regarded an effective energy-momentum tensor for the
nth-order metric perturbation (n)Fab.

The vacuum background condition G b
a = 0 implies the identity ∇a

(1)G a
b [A] = 0 and Eq. (36)

implies ∇a (n)T b
a = 0. This equation gives consistency relations which should be confirmed. Note

that (n)T b
a does not include (n)Fab, since the terms −(NL)G b

a
[{

(i)Fcd
∣∣ i < n

}]
and (n)T b

a in
Eq. (36) don’t include (n)Fab due to the vacuum background condition. This situation is same
as that when we solved the linear equations (22)–(23). Furthermore, we decompose (n)Tab as

(1)Tab =: ∑
l,m
T̃ABSδ (dxA)a(dxB)b+2r∑

l,m

{
T̃(e1)AD̂pSδ + T̃(o1)AεpqD̂qSδ

}
(dxA)(a(dxp)b)

+r2
∑
l,m

{
T̃(e0)

1
2

γpqSδ + T̃(e2)

(
D̂pD̂q−

1
2

γpq∆̂

)
Sδ + T̃(o2)εs(pD̂q)D̂sSδ

}
(dxp)a(dxq)b.(37)

Then, the replacements T̃AB→ T̃AB, T̃(e1)A→ T̃(e1)A, T̃(o1)A→ T̃(o1)A, T̃(e0) → T̃(e0), T̃(e2) → T̃(e2),
T̃(o2) → T̃(o2) in the solutions (25)–(35) yield the solutions to Eq. (36).

7
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5. Summary ———- We proposed a gauge-invariant treatment of the l = 0,1-mode perturbations
on the Schwarzschild background spacetime as the Proposal 1. Following this proposal, we derived
the l = 0,1-mode solutions to the Einstein equations with the general linear perturbations of the
energy-momentum tensor in the gauge-invariant manner.

The derived solution in the l = 1 odd mode actually realizes the linearized Kerr solution in the
vacuum case. Furthermore, we also derived the l = 0,1 even-mode solutions to the Einstein equa-
tions. In the vacuum case, in which all components of (1)Tab vanish, the l = 0 even-mode solution
realizes the only the additional mass parameter perturbation of the Schwarzschild spacetime. These
results are the realization of the linearized gauge-invariant version of uniqueness theorem of Kerr
black hole and these solutions are physically reasonable. Owing to this realization, we may say
that our proposal is also physically reasonable. Details of our discussions are given in Ref. [9].

The fact that we confirmed Conjecture 1 for the linear-metric perturbations in the Schwarzschild
background case including the l = 0,1 modes implies that the extension to any-order perturbations
through our gauge-invariant formulation [7] was possible, at least, in the case of the Schwarzschild
background case. Thus, we can develop a higher-order gauge-invariant perturbation theory on the
Schwarzschild background spacetime [8].

We leave the development for specific astrophysical situations such as gravitational-wave as-
tronomy through our formulation as future works.
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