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KAGRA is a laser interferometric gravitational wave (GW) telescope in Japan. It joined O4,
the fourth international GW observation run, with other telescopes, namely, Laser Interferometer
Gravitational Wave Observatory (LIGO) and Virgo. In the previous GW observation runs: O1,
O2, and O3, 90 events were reported, and many more events are expected to be observed in O4.
With the beginning of GW astronomy, the calibration of observed GW signals is becoming more
important than ever before. The main calibration system used in KAGRA, LIGO, and Virgo is a
photon calibration system (Pcal), which injects reference signals into a telescope by the radiation
pressure of a laser. On the basis of the preparation and operation of KAGRA Pcals in O3, we
prepared an upgrading plan for O4. This plan includes three main improvements: improving
the Pcal laser beam alignment system, reducing noise, and dereasing uncertainty. Improvement
works were conducted between the end of O3 and the start of O4 in accordance with this plan.
The following results were obtained: first, precise remote alignment was enabled in the critical
Pcal laser path region. Second, a Pcal noise source was identified and noise was significantly
improved, resulting in a remarkable 50 dB reduction and sufficient reduction of the Pcal noise
below the design sensitivity of KAGRA. Third, studies on the temperature dependence and laser
incidence state dependence of the integrating sphere-type power meter were conducted to reduce
the uncertainty of the Pcal, which is directly related to the uncertainty of the telescope signal. The
details of the KAGRA Pcal and the improvements made between O3 and O4 are reported in this
study.
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1. Calibration of the gravitational wave telescope KAGRA

On Sep. 14 2015, the Laser Interferometer Gravitational Wave (GW) Observatory (LIGO)
accomplished the first direct detection of GWs; this event marked the beginning of GW astronomy
[1]. Since then, three observation runs have been conducted. We are currently in the midst of O4, the
fourth international joint observation run, which started in May 2023. A total of 90 GW events were
reported by the third observation run (O3). These events included the first multimessenger binary
neutron star merger event kicked by a GW detection, GW170817 [2]. As the number of observations
continued to increase, the observational accuracy became as important as the detectability of GWs.
In the field of multimessenger astronomy, which incorporates follow-up observations using optical
telescopes, the precise localization estimation of GW sources has become crucial.

Increasing the number of operating telescopes not only increases detection frequency detection
but also improves source localization estimation. KAGRA is a laser interferometer-type GW
telescope built in Japan. It started operating in 2019 and is currently participating in O4. Although
KAGRA still has lower sensitivity than LIGO or Virgo, it continues to be upgraded to contribute to
the GW observation network to increase the number of telescopes making simultaneous observations
and expand the coverage of sensitive observation areas.

The KAGRA interferometer has numerous real-time control loops to maintain it in a highly
sensitive state. In particular, the differential arm (DARM) control loop (Figure 1), which may
contain the GW signal is the most important calibration target.

Figure 1: Differential arm (DARM) control loop and the h(t) reconstruction. The DARM control loop,
consisting of sensor 𝐶, control filters 𝐷 and actuator 𝐴, is the most important control loop for gravitational
wave (GW) detection. The numerical model of 𝐶 and 𝐴, error signal 𝑉err and control signal 𝑉ctrl are used to
reconstruct the strain information, which may include GW signals.

The DARM control loop is a negative feedback system. It is composed of sensor 𝐶 or the
interferometer; control filters 𝐷; and actuators 𝐴, which are coil magnet actuators on an end mirror
or the end test mass (ETM) of the interferometer. We use the output signal from C (error signal𝑉err),
signal into A (control signal 𝑉ctrl), and the model of C and A (𝐶model and 𝐴model) to reconstruct the
injected signal that may contain the GW signal ℎ(𝑡), as shown in Figure 1. ℎrec(𝑡) is the main output
data of the telescope, which is called reconstructed strain data. Photon calibration systems (Pcals)
are used as the primary calibrators in KAGRA and other telescopes [3]. A Pcal is a calibrated
actuator that can inject signals into the interferometers to measure the transfer function of C and
A for modeling. We have upgraded the Pcal after O3GK, a joint observation run by KAGRA and
GEO 600, in 2020 [4].

2



P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
4
9

Calibration of the gravitational wave telescope KAGRA Dan Chen

2. Photon calibration system

2.1 Photon calibration system: Pcal

A Pcal is a system that injects laser beams into an ETM to make a displacement with the laser
radiation pressure. In KAGRA, independent Pcals are installed for each of the two ETMs, ETMX
and ETMY: Pcal-X and -Y. These systems have the same concept design. Pcal-X is used as the main
calibration system, and Pcal-Y is the backup system. Although the following mainly describes Pcal-
X, the improvements described below were applied to Pcal-X and -Y. Figure 2 shows the concept of
a Pcal, which consists of a transmitter (Tx) module, generating laser beams and controlling power,
and a receiver (Rx) module, receiving the laser beams reflected by the ETM. The two Pcal laser
beams have a wavelength of 1047 nm and are generated by a continuous wave ytterbium fiber laser
source (KEOPSYS by Lumibird). They are injected into a noncentered suitable point on the ETM
to avoid exciting the internal resonant mode. Each beam passes through an acousto-optic modulator
(AOM) and is extracted using by a beam sampler into photodetectors (PDs) called optical follower
servo (OFS) PD and Tx PD at a 0.4% ± 0.07% power of the injection power [5] (Figure 2). The
output of the OFS PD is input of a control filter and an AOM as an actuator for laser power to
configure a laser power stabilization system, which is necessary to provide reference signals without
substantial noise injection. The control system has an input port, where the laser power is controlled
by following the voltage signal input. For this reason, this control system is called the OFS system.
The two beams are injected into a vacuum chamber through an optical window and aligned toward
the ETM by some mirrors in A chamber, reflected into the Rx module, and then received by the Rx
PD. Integrating sphere type laser power meters are used for the Tx and Rx PDs to accurately and
precisely measure the Pcal laser power. Given the conditions of the installation site, the Pcal system
was installed in the A chamber area 34.9 m away from the ETM, making beam alignment difficult.

The displacement generated by the Pcal is presented by the following equation [3]:

𝑥( 𝑓 ) = −2𝑃( 𝑓 ) cos \
𝑐𝑀 (2𝜋 𝑓 )2

[
1 + ( ®𝑎 · ®𝑏)𝑀

𝐼

]
, (1)

where 𝑥( 𝑓 ) is the displacement in the frequency domain; P is the total Pcal laser power on the
ETM; \ is the incident angle; 𝑐 is the speed of light; 𝑀 is the mass of the ETM; ®𝑎 and ®𝑏 are the
position vector on the ETM of the sum of the Pcal beams and the main interferometer laser beam,
respectively; and 𝐼 is the moment of inertia of the mirror.

Interferometer calibration is performed in the frequency domain. Therefore, sinusoidal waves
are injected into the interferometer using the Pcal. For this purpose, the Pcal laser power is held at
a certain DC value and added with the sinusoidal waves. The sinusoidal waves are always input as
reference signals when the telescope is in observation mode.

The signal from the Pcal is used as a reference for interferometer calibration such that the
uncertainty of the Pcal itself directly affects the uncertainty of the telescope. From Equation 1, we
can estimate the extent to which the uncertainty in the measurement of each parameter value affects
the uncertainty of the Pcal. The measurement uncertainty of laser power measured at the Rx PD,
and the Tx PD is the most particularly dominant. This situation accounts for the need for accurate
and precise absolute calibration of integrating spheres.
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Figure 2: KAGRA Pcal, which is the primary calibration system injecting the reference signal by laser
radiation pressure. OFS systems are implemented in the Tx module to inject power-controlled lasers. The
Pcal laser power is measured by the Tx PDs and the Rx PD to estimate the end mirror displacement applied
by the Pcal, which is the reference signal. The OFS systems are controlled by the KAGRA real-time system
through a digital-analog converter and anti-imaging filters. The A chamber area and the end mirror area are
separated by a distance of 34.9 m.

2.2 Integrating sphere calibration

For the calibration of integrating spheres, the LIGO group calibrates the standard integrating
sphere gold standard of KAGRA (GSK), which is based on the integrating sphere gold standard
of LIGO (GSL) that is absolutely calibrated by the National Institute of Standards and Technology
(NIST) [3] [6]. The GSK is maintained at the University of Toyama and acts as the standard
laser power meter in KAGRA. For calibrating integrating spheres at the KAGRA site, such as the
Rx PD, another integrating sphere, called working standard of KAGRA (WSK) is used to carry
the calibration factor from the GSK at the University of Toyama to the KAGRA site. This work
is conducted about once a month to monitor long-term changes in the calibration factor of each
integrating sphere in KAGRA. When calibrating the WSK with the GSK, we essentially adopt the
method described in a previus work [3]: We inject a laser separated by a beam splitter into the GSK
and WSK and measure the output ratio of the two integrating spheres [7]. Figure 3 illustrates the
calibration procedure for integrating spheres. A global network for the calibration of GW telescopes
that includes not only NIST but also Die Physikalisch-Technische Bundesanstalt (PTB) as a standard
orbit is planned to improve reliability of the integrating sphere calibration [6].

2.3 Issues and points of enhancement found by O3GK

We performed Pcal installation and basic operation by O3GK [4]. The following issues and
points for improvement were found during the installation and operation.

A. Difficulty of beam alignment and beam position adjustment on the ETM
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Figure 3: Procedure for integrating sphere calibration. NIST provides an absolute calibration of one
integrating sphere, and we transport that calibration to the KAGRA site via several comparison calibration
measurements. Arrows indicate transport of integrating spheres.

B. Noise in the main interferometer caused by the Pcal

C. Improvements in calibration uncertainty

A: The first issue is related to the work efficiency of Pcal beam alignment. As indicated above,
we need to perform a round-trip laser beam alignment of ∼70 m. This 70-m component is a vacuum
pipe. Given that entering and checking the beam position is difficult, a delicate alignment from the
A chamber area is required. During O3GK, we lacked an effective alignment system for this 70-m
component. In addition, after vacuuming, the Pcal beam positions still need fine tuning. However,
a mechanism that could efficiently perform this action is unavailable.

B: The second point focuses on the noise in the interferometer caused by the Pcal. After O3GK,
the noise of Pcal-X was checked and found to be greater than expected. It exceeded the designed
sensitivity of KAGRA and may limit sensitivity during O4. During the observation run, the Pcal
continues to input reference signals to the interferometer; however, it is assumed to be nonfunctional
at other frequencies.

C: The last point is the improvement in the uncertainty of the Pcal. Such an improvement can
improve the uncertainty of the telescope. The uncertainty of the Pcal in O3GK was estimated to be
3% [4], which was larger than that of LIGO (0.75 %) [3]. This situation indicates the possibility of
improving the uncertainty.

These three points are our Pcal upgrade points for O4.

3. Upgrades for O4

3.1 Installation of remote-controllable mirrors

For issue A, piezo actuators were installed on a mirror mount holding a mirror to enable the
Pcal laser beam in A chamber to remotely control the alignment at the point just before the long
vacuum pipe. The actuators are vacuum-compatible piezo linear actuators (picomotors) provided by
Newport (ultrahigh-vacuum model). They have travel ranges of 12.7 and 25.4 mm. Figure 4 shows
the mirrors with the picomotor-installed mount, which are marked with white tape temporarily.
Given that the purpose of the picomotors is to fine tune the beam positions on the ETM on the
order of a few mm to a few cm and considering that the mirrors are 3-inch mirrors and the distance
to the ETM is 34.9 m, the travel ranges are sufficient. This remote alignment system not only
increases the efficiency of the initial alignment but also compensates for alignment changes caused
by vacuuming.
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Figure 4: Picomotor-installed mirrors in A
chamber. These mirrors align the Pcal beams
to the ETM, which is located 34.9 m away, using
a vacuum pipe. The remote control system with
the picomotors allows for fine alignment adjust-
ment.

Figure 5: Estimated noise on the main interfer-
ometer caused by the Pcal. The noise has been
improved by ∼50dB, which is sufficiently lower
than the target sensitivities of KAGRA.

3.2 Pcal noise hunting and the countermeasures

During the investigation of the Pcal noise, a large unexpected sinusoidal signal was found in
the signal to the Pcal OFS system. This signal was finally identified as the noise source. Although
the Pcal OFS system is assembled with analog circuits, ports, such as those for reference signals,
receive input from the KAGRA digital system through a digital-analog converter (DAC) and anti-
imaging (AI) filters (Figure 2). The unexpected signals were ∼5 Vpp at ∼500 kHz and observed at
the input ports of the Pcal OFS analog circuit. This situation indicates that these signals may exert
unexpected effects on the OFS system. We found that OP amps (analog devices, AD8622) with an
output impedance of 100 Ω in the final stage of the AI circuit caused the unexpected signals owing
to their inability to supply sufficient current to the parasitic capacitance of the long cable over 35
m in length between the OFS circuit at the area of A chamber and the AI circuits at the end mirror
area. We added a buffer circuit just after the AI circuit to prevent the unexpected signals using
AD8672 (analog devices) with 500 Ω output impedance.

The noise in the interferometer caused by the Pcal is shown in Figure 5. Under the laser
power-stabilized condition provided by an OFS control loop, the relative intensity noise (RIN) was
obtained by measuring the laser power fluctuation with the TxPD1 and TxPD2. Subsequently,
using Equation 1 and the following parameters, the mirror displacement noise produced by this
Pcal laser was calculated and divided by the baseline length of 3000 m to yield the strain-equivalent
noise. The parameters used were \ = 0.755 ◦, 𝑀 = 22.945 kg, and 𝑐 = 2.99792458 × 108 m/s.
( ®𝑎 · ®𝑏)𝑀/𝐼 was ignored because its value is sufficiently small relative to 1 when the beam positions
are adjusted well. In addition, given that the required DC laser power depends on the sensitivity
of the interferometer, a value of 1 W is assumed for each path. This value is similar to that used
or planned to be used in O3GK (3.2 W) and O4 (1 W). No reference signal was injected during
the noise measurement. The result shows that the sensitivity of the interferometer could have been
limited by the Pcal before this improvement; however, with the added buffer circuit, the noise is now
sufficiently low. Note that if the interferometer sensitivity is as good as designed, the Pcal reference
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signal can be observed with an adequately large signal-to-noise ratio (SNR) in the interferometer
even with a low laser power, indicating that the noise caused by the Pcal laser can be reduced.

3.3 Uncertainty improvement with an updated integrating sphere calibration procedure

A close investigation of the integrating sphere calibration data in O3GK showed that the data
variability in the long-term monitoring was greater than expected. We focused on the two points
listed below to identify the causes of the variation and implement countermeasures. Although the
overall results of the data acquired and countermeasures taken for O4 will become clear in the
future, the investigations and countermeasures for these two points are described in this section.

a. Temperature dependence of integrating spheres

b. Conditions of beam injection into an integrating sphere

For point a, we monitored the time evolution of the WSK output in our laboratory by injecting a
laser into the WSK [7]. A silicon diode thermometer was attached to the sensor part of the WSK and
was simultaneously used to monitor the temperature of the WSK. The results are shown in Figure 6,
which implies that the temperature change stabilizes ∼1 h after the laser injection and that output of
the WSK is correlated with the temperature, which may change by ∼10%. In our integrating sphere
calibration, we always compare two integrating spheres. Therefore, if the time variation is similar
at the two integrating spheres, the temperature dependence effect is small. Based on these results,
we decided to provide a warming-up time of 1 h in our integrating sphere calibration procedure.

(a) Output voltage of the WSK. (b) Temperature changes of the WSK.

Figure 6: Time variation of the output voltage and temperature of the WSK after the injection of a power-
stabilized laser. The temperature of the WSK increases immediately after the laser injection, and the output
voltage of the WSK decreases accordingly. These large time changes stabilize in ∼1 h.

Regarding point b, the output of the laser power sensors of integrating spheres is generally
supposed to be independent of the angle and polarization of the incident laser and the position of
the incident laser if it is well inside the edge of the incident port. However, our research shows that
these factors must also be considered to achieve a subpercent uncertainty in the future. As described
in our study [8], the effect of the incident angle becomes significant from approximately −10 ◦, with
an effect of ∼8 % in the worst case scenario. Even at an incident angle between +5 ◦ and −5 ◦, the
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effect of ∼0.1 % is possible. The dependence on incidence position has also been investigated by
the LIGO calibration group and suggests an effect of a few tenths of a percent impact [9]. For O4,
a mark or positioning mechanism is applied in the Tx/Rx module and the calibration measurement
setup for the WSK such that the incident angles are ∼ 0 ◦ and the beam positions are at the center
of the port at each calibration measurement to reduce the influence of effects.

4. Conclusion

As the number of observed GW events increases, the calibration of GW telescopes becomes
increasingly important. The KAGRA interferometer is calibrated using the Pcal, which is similar
to the calibration systems of LIGO and Virgo. We have upgraded the Pcal after the O3GK.

The three main upgrades, namely, an improved laser beam alignment system, reduced laser
power noise, and tasks for improving the calibration uncertainty of the Pcal itself, were completed
before O4. In particular, the laser noise was reduced by ∼50 dB and is sufficiently lower than
the target sensitivity of KAGRA. The overall uncertainty of the Pcal, including the effect of the
improvements above, will be obtained after the ongoing O4 and analysis and is anticipated to be
better than the 3 % uncertainty obtained in the O3GK.

The Pcal is a calibration method used in GW telescopes for many years. It has the potential for
reducing the uncertainty. Given that improving the calibration accuracy, precision, and reliability
of telescopes is an ongoing and future challenge, we will further improve the Pcal and develop other
new calibration methods, such as a gravity field calibrator (Gcal) [10].
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