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The joint detection of GW170817 and a short gamma-ray burst (GRB) has provided the first direct
evidence that binary neutron star (BNS) merger produces GRB. Recently and unprecedentedly,
very-high-energy ( 0.1–10 TeV) afterglow emission were reported from a few GRBs (e.g. MAGIC,
H.E.S.S. and LHAASO observations), suggesting the prospects of multi-messenger detection of
gravitational-wave counterparts with the next-generation gamma-ray detectors. We study GW-TeV
joint detectability of BNS merger using a population model prescribing the distribution of common
parameters (e.g. energetics, viewing angle) in both gravitational-wave and very-high-energy
afterglow emission. We report the expected distributions of observables (distances, orientations,
energetics and ambient densities) for detectable events and the joint GW-TeV detection rate for the
CTA project.
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1. Introduction

The joint detection of the BNS merger GW170817 and a short gamma-ray burst (GRB)
170817A demonstrated the promise to identify and interpret high energy counterparts of gravitational-
wave (GW) sources. GRBs have been observed to emit radiation beyond GeV energies with no
clear cutoff [1], including short GRBs such as GRB 090510 [2, 3]. Recently, gamma-ray emission
up to very-high-energy (VHE, > 0.1 TeV) range has been discovered from several GRBs: 190114C
and 160821B [4–6] by the MAGIC Telescope, 180720B and 190829A by H.E.S.S. [7, 8]. The
VHE emission has been modeled with a synchrotron self-Compton (SSC) origin in forward shock
afterglow [e.g., 9–11], while synchrotron or external IC origin are also suggested [e.g., 8, 12].
VHE search was performed for the GW170817 event starting 5 hours post-merger [13, 14] but no
significant emission was found, which is likely due to the significant off-axis observation (≳ 20◦).

The prospects of GW follow-up observations with CTA has been explored in the literature,
mainly by using the phenomenological extension of the high energy spectra of short GRBs [e.g., 15–
18] Therefore, considerations such as SSC component, off-axis observation (as in GW170817) are
not discussed in detail by previous studies. In this proceeding paper, we will present a quantitatively
modeling of CTA’s GW follow-up detectability of VHE afterglow from BNS merger, taking into
account the SSC emission component and off-axis observation.

2. Model

2.1 GW sensitivity model

The reach of GW interferometer is characterized by its horizon distance 𝐷GW with 𝐷2
GW ≡

M5/3𝑆𝐼 , whereM is the chirp mass of the binary, 𝑆𝐼 is a quantity solely depending on the sensitivity
profile of the interferometer [19]. It is defined such that the signal from an optimally-located and
oriented BNS at 𝐷GW can produce a signal-to-noise ratio (SNR) of 8 by ideal matched filtering in
the detector’s data stream, corresponding to a 5𝜎 detection. The general SNR of a GW signal can
be written as

𝜌2(𝑑𝐿 , \, 𝜙, 𝜓, ]) = 𝜌2
0
𝐷2

GW

𝑑2
𝐿

Θ2(\, 𝜙, 𝜓, ]) , (1)

where 𝑑𝐿 is the luminosity distance to the binary, Θ2 represents the angular response pattern to
the sky location of the source (\, 𝜙, inclinations ], polarization angles 𝜓 relative to the detector)
combining the antenna patterns with a global maximum of unity corresponding to an optimally
positioned and oriented source. The explicit functional form of Θ are given in [20]. We could
define the GW visibility distance 𝑑GW as

𝑑GW ≡ 𝐷GWΘ (2)
𝐷GW = max

\,𝜙,𝜓, ]
𝑑GW . (3)

The detection criteria is then written as

𝑑𝐿 < 𝑑GW . (4)
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2.2 VHE sensitivity model

The onset of VHE emission is expected to follow shortly (∼ 1 s) after the gravitational waves
from a BNS merger, but usually there is a delay time before the start of follow-up observations.
Given the delay time 𝑡delay, we determine a detection by CTA by the following criteria resembling
the instrument exposure:

⟨F |jet⟩ ≡
1
𝑡exp

∫ 𝑡delay+𝑡exp

𝑡delay

F |jet 𝑑𝑡 > F |CTA(𝑡exp) (5)

where F |jet = L|jet/(4𝜋𝑑2
𝐿
) is energy flux spectrum from a Gaussian jet afterglow, 𝐹 |CTA is the CTA

5𝜎 differential sensitivity in the 0.1 – 10 TeV energy band. The CTA sensitivities are computed
by the public Python package ctool1 for an exposure time of 𝑡exp. For compatibility with GW
sensitivity model, we could similarly define the VHE visibility distance 𝑑 as

𝑑EM ≡

√︄
L|jet

4𝜋F |CTA
(6)

𝐷EM ≡ max
𝑋

𝑑EM , (7)

where 𝐷EM is the marginally detectable distance with optimized parameter 𝑋 of the burst. The
detection criteria then becomes

𝑑𝐿 < 𝑑EM . (8)

2.3 Joint detectability model

The GW-VHE joint detection rate of BNS events is estimated by the following equation:

Rjoint =

∫ ∞

0
𝑃joint(𝑑𝐿)

RBNS(𝑧)
1 + 𝑧

𝑑𝑉

𝑑𝑧
𝑑𝑧 . (9)

Here 𝑃joint is the averaged detection probability for a source located at luminosity distance 𝑑𝐿 (𝑧),
i.e., the detectable fraction of a BNS population sampled from the assumed parameter space 𝑋 . We
define the joint GW-EM visibility distance as:

𝑑joint ≡ min(𝑑GW, 𝑑EM) (10)
𝐷joint ≡ max

𝑋
𝑑joint . (11)

and we use a joint GW-EM detection criteria as:

𝑑𝐿 < 𝑑joint . (12)

Then the detectable probability is given by

𝑃joint(𝑑𝐿) =
∫
𝑑2
𝐿
<𝑑2

joint

𝑑𝑋 . (13)

1http://cta.irap.omp.eu/ctools/
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Figure 1: TeV light curves and multi-wavelength spectra from a simulated BNS merger event at 𝑧 = 0.05, for
various viewing angles and medium density. Contributions by synchrotron and SSC are indicated in dashed
and dotted lines, respectively. 5𝜎 sensitivities of CTA cites are compared assuming 30 min exposure and
20◦ zenith. The spectral extension of GRB 090510 is shown for comparison [2].

And the joint detection rate (ignoring cosmological evolution of BNS merger rate) is given by

Rjoint ≈
4𝜋
3
RBNS⟨𝑑3

joint⟩𝑋 . (14)

The fraction of GW events also detectable by follow-up EM observation can be found by:

𝑓joint

𝑓GW
=

〈
𝑑3

joint

〉
𝑋〈

𝑑3
GW

〉
𝑋

. (15)

One can derive the distributions of the observables 𝑥 in the jointly-detected population with prior
distribution P𝑥 :

P𝑥 |joint ≡
1

Rjoint

𝑑Rjoint

𝑑𝑥
= P𝑥

〈
𝑑3

joint

〉
𝑋/𝑥〈

𝑑3
joint

〉
𝑋

. (16)
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Figure 2: Upper: Jointly-detectable fraction within the GW detector reach. Lower: annual joint detection
number versus GW detector reach. Local BNS merger rate of 320 Gpc−3 yr−1 is assumed [21].

Here <>𝑋/𝑥 is the integral average over parameter set 𝑋 but leaving out 𝑥 as variable. We could
use the function M𝑥 defined as

M𝑥 ≡
P𝑥 |joint

P𝑥

=

〈
𝑑3

joint

〉
𝑋/𝑥〈

𝑑3
joint

〉
𝑋

(17)

to indicate how the distribution P𝑥 has changed under the GW-VHE joint observational bias.

3. Result and discussion

We use the Monte Carlo approach to evaluate GW-VHE joint detectability, by generating a
large population (> 105) of BNS merger afterglow. Each event is defined by its random parameters,
including short GRB parameters 𝑋sGRB = 𝐸0, Γ0, \ 𝑗 , 𝑛0, 𝜖𝑒, 𝜖𝐵, 𝑝 drawn from the distributions given
by a decade of short GRB observations [22] and inclination parameters 𝑋incl = \, 𝜙, ], 𝜓 drawn from
uniform distribution. Note that the shock electron and magnetic field parameters 𝜖𝑒 = 0.1 and
𝜖𝐵 = 0.01 are fixed in [22] due to their degeneracy with burst energy 𝐸0 and density 𝑛0 when
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Figure 3: Upper left panel shows the luminosity distance distribution. Other panels show the observational
bias indicator for viewing angle (upper right), isotropic energy (lower left) and CBM density (lower right)
respectively, defined in (17) as the ratio of observed distribution P|joint to intrinsic distribution P. Observa-
tional assumptions are 15-min delay and 30-min exposure.

reproducing the same synchrotron afterglow data, but they indicated that when choosing a value
as low as 𝜖𝐵 = 10−4, the median of fitted 𝐸0 and 𝑛0 both increase by a factor of ≈ 10 compared
to the 𝜖𝐵 = 0.01 assumption. With such distribution, we tend to estimate a much brighter SSC
component from the population, as the ratio of SSC to synchrotron luminosity scales with 𝜖𝑒/𝜖𝐵
[23]. Therefore, we additionally study an alternative BNS population with a choice of 𝜖𝐵 = 10−4

by manually scaling up 𝐸0 and 𝑛0 distribution by a factor of 10.
In Figure 1 we demonstrate TeV light curves and spectra powered by a Gaussian jet, taking into

account attenuation by EBL absorption, compared with the extrapolated template of short GRB
090510 [2] that has been frequently used in previous CTA studies [e.g., 15–18]. We show two
ambient densities are shown for typical values in old stellar populations (𝑛 = 10−3 cm−3) and in star
forming regions (𝑛 = 1 cm−3), respectively.

In Figure 2, we estimate the follow-up detectable fraction and the annual detection rate as a
function of GW sensitivity (horizon distance). We find 𝑓joint/ 𝑓GW ≲ 1% for current and future
sensitivities, and we estimate the joint detection rate by LIGO-CTA to be ∼ 0.1 – 2 per year. This is
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an optimistic estimate since we do not take into account the duty cycle of the instruments. Assuming
a fiducial duty cycle of 15% for CTA yields a smaller detection rate of ∼ 0.015 – 0.3 per year.

In Figure 3, we show the probability density distribution of luminosity distance 𝑑𝐿 to the
sources, as well as the observational bias indicator M𝑥 for viewing angle \obs, isotropic equivalent
energy of the jet center 𝐸0 and circumburst medium density 𝑛0 defined in (17).
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