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KAGRA is a ground-based gravitational wave detector located in the Kamioka mine, Gifu, Japan.
The fourth international joint observing run (Observation-4; O4) by LIGO, Virgo, and KAGRA
started from May 2023. The KAGRA detector characterization group aims to enhance the
reliability of data analysis and GW detection by supporting detector commissioning and improving
our understanding of detector instruments and acquired data. We provide various tools for
monitoring, understanding, and mitigating noise sources, which help enhance the performance of
the KAGRA detector and data analysis. Here, we report the recent activities and status of the
detector characterization of KAGRA for O4.
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1. Introduction

A gravitational wave (GW) is a wave solution obtained when the Einstein equation is solved
considering the approximation of a weak gravitational field. It propagates at the speed of light and
is predicted based on the general relativity theory, which was established by Einstein in 1915 [1].
While the evidence of the existence of GWs has been inferred indirectly based on the change in
the revolution period of the binary pulsar PSR B1913+16 [2], the first direct detection of the GW
was finally achieved using enhanced LIGO detectors on September 15, 2015 [3]. To date, three
international observation runs (i.e., O1, O2, and O3) were performed, and 90 GW events [4] were
detected by LIGO [5] and Virgo [6]. From 25 May 2023, the fourth international observing run
(O4) initiated with the International Gravitational-Wave Observatory Network (IGWN) comprising
LIGO, Virgo, and KAGRA.

KAGRA is a cryogenic underground GW detector comprising of a laser interferometer with
3-km arms located in Kamioka, Gifu, Japan [7]. It possesses more improved features than other
detectors with the arm length of km scale. The first feature is the silent underground environment
where the detector operates. By installing the detector underground, the effects of noise, e.g.,
wind, temperature, and human activities, can be mitigated. The second feature is to cool down
mirrors to reduce thermal noise. KAGRA plans to cool down four sapphire mirrors comprising the
Fabry–Perot cavity to approximately 20 K.

During the O3 run, KAGRA performed the first international observation run with GEO600
detector starting from April 2020, which is known as O3GK [8]. The joint analysis of the
GEO–KAGRA data for transient GW signals was performed [9]. To improve sensitivity toward
the O4 run, the contribution of various noise sources to sensitivity (known as a noise budget) was
investigated for the detailed understanding of the noise limiting the sensitivity [8]. According to the
obtained noise budget, the measured sensitivity could be approximated by adding up noise sources.
The sensitivity was dominated by the noise generated by sensors used for locally controlling vibra-
tion isolation systems, acoustic noise, shot noise, and laser frequency noise. The task regarding O4
is to mitigate noise and improve sensitivity [10].

Herein, we describe the status of the detector characterization group in KAGRA related to the
O4 run. The detector characterization (DetChar) group performs two roles. The first role is to
improve the sensitivity and stability of the interferometer controls. We have investigated the noise
origin and path contaminating the external noise by analyzing multiple control signals and witness
sensors for noise hunting [10]. We propose data-monitoring tools to analyze the long-term stability.
Section 2 describes the tools for the commissioning support. The second role is to provide the
data quality information to prevent the false detection of GWs in data analysis. Section 3 describes
activities related to data quality.

2. Noise-hunting tools

2.1 Summary page

An interferometer is controlled based on the feedback control of mirror suspensions and laser.
Data acquisition and control are performed using a the real-time system. These signals are constantly
monitored for maintaining their stability. Currently, there are more than 100,000 channels related to
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controls, and it is not possible to monitor all of them. The summary page is a tool that continuously
monitors sensors and important signals to control the interferometer.

Figure 1: Top page of the summary page on May 19, 2023. Left top: The orange curve indicates the
sensitivity of KAGRA in the lock state with the deviation of the sensitivity. The blue curve shows the
reference sensitivity recorded on April 5, 2023. Right top: The time variation of the inspiral range. The
bottom bar shows the status of the interferometer. The green color indicates the locked time, i.e., the
interferometer is under control. The red color indicates the unlocked data, i.e., the interferometer is not under
control. Left middle : The changes in the state of the guardian, which manages the interferometer state based
on the commissioner’s request. Right middle : The bit status of the online DQ flag. Green (red) indicates that
the bit flag is active (inactive). Left bottom : The time-frequency map (known as spectrogram) of the strain
data. The color bar shows the amplitude spectrum density. Right bottom : The whitened time–frequency
map of the strain data. The color bar depicts the normalized spectrum divided by the median amplitude
spectrum density improving the visibility of the transient signal.

Figure 1 shows the top page of the summary page. Each plot summarizes the results of 1 day.
Other plots for the past dates are accumulated, and past pages can be easily viewed through the
calendar feature. Pages are updated automatically.

The summary page is created using a python package known as gwsumm, which is developed
by LIGO members based on a python package known as gwpy [11]. To create a page, it is necessary
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to set in advance the channels that will be monitored and determine their monitoring methods,
e.g., time series, whitened time series, amplitude spectrum density, spectrogram, and so on. Since
O3GK, sensors (such as oplev for length direction and new physical environmental sensors) and
new interferometer controls (such as angular sensing and control, fiber noise cancellation, and phase
locking loop) have been implemented and added to the summary page.

2.2 Pastavi

All data acquired at the KAGRA site is transferred to the main data storage located in Kashiwa,
Chiba, Japan. To view past data, derive plots, and perform various analyses, users need to log in to
the main data storage and develop codes to read the data. The data are stored in the frame format
and is divided into 32-s data. To read the data, it is necessary to realize channel names in advance
and correctly handle the divided data. In addition, it requires to use the python package known as
gwpy [11] to plot the data. Sometimes this will be a barrier for users who are not familiar with
code development and data handling. Therefore, we have developed a web-based tool to assist users
to easily plot and analyze past data. This tool complements the automatically generated summary
page. To ensure computing resources, Pastavi is executed on the dedicated server.

Figure 2: Top page of the web-based tool, i.e., Pastavi

Figure 2 shows the web page of Pastavi. The following three steps are considered for plotting:
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In step 1 (top of Fig.2), the user selects the time and date for reading data in the JST (Japan
Standard Time), UTC (Universal time coordinated) timezone, or GPS (Global Positioning System)
time. In step 2 (middle of Fig.2), the user selects the channel name to plot. The user can enter
directly or search the full channel name using a partial channel name. In step 3 (bottom of
Fig.2), the user selects the types of plots including the time series, whitened time–series, averaged
amplitude spectrum density(ASD), time–frequency map (spectrogram), whitened time–frequency
map (whitened spectrogram), calculation of detectable distance, and so on. The plotting options
required for typical plots, such as the axis scale selection, plotting range selection, and data output
in the text format, are available. The web page is designed to be simple, light, and user-friendly.

We have modified and developed functions based on user requests and comments. Most
recently, we have implemented a function to prepare a noise budget by combining the measured
transfer function and the noise curve of the sensor.

2.3 DetChar cluster at the KAGRA site

The new cluster computer has been built at the KAGRA site to enhance online analysis resources
for DetChar. HTCondor manages compute jobs and has been set up with the cooperation of NAOJ’s
astronomy data center. In addition to the summary page, various analyses related to detchar are
being performed at the KAGRA site, i.e., the analysis to determine transient glitches (known as
Omicron [12]), coincidence analysis between triggers (called Hveto [13]), analysis to compute
the coherence between multiple channels (known as Bruco), and data quality production (Section
3.1). These analyses are being performed on dedicated computers; however, in the future, they
will be integrated, so that they are conducted within the detchar cluster, thereby allowing for easier
maintenance and the unification of the computing environments of tools basedon IGWN computing.

3. Event validation tools

3.1 Data quality information

One of the most important roles of DetChar is to prevent the false detection of GWs [14].
GWs are very weak signals and are hindered by various disturbances, such as the vibration of the
mirrors that constitute an interferometer and the instability of the laser power and frequency. Such
disturbances can be detected as false GW events as well. To separate GWs from such false events,
it is necessary to understand the statistical behavior of the detector noise.

While detecting GWs, the observational data, which include known disturbances, are tagged
with data quality (DQ) flags and data category flags. Tagged data are removed from the input data
for searching GWs to reduce the false event rate. For O3GK data, the basic operating status of the
interferometer was provided as an online process, i.e., 𝑂(10s), and other information about noise
behavior was provided as an offline process with 𝑂(month) delay. As one of DetChar’s activities,
we optimized the criteria of DQ flags and updated the software to provide DQ flags with a shorter
delay. The optimization was conducted based on the understanding of the hardware problem,
which occurred during hardware upgrade and the commissioning of the interferometer. DQ flags
contain disturbances due to the environmental noise transients caused by the electrical glitches of
instruments and the operational errors of human activities. The generated DQ flags were uploaded
to the dedicated server and shared with the data analysis members of the LVK collaboration.

5



P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
6
4

Detector characterization of KAGRA for the fourth observing run Hirotaka Yuzurihara

3.2 Data quality report

Figure 3: DQR process. The data are collected at the CIT and analyzed using low-latency pipelines. The
detected GW candidate (trigger) is send to a server known as GraceDB, and receivers are alerted via igwn-
alert. We receive the alert at the KAGRA site and launch the tasks to provide the data quality information
based on the trigger. The results are transferred to the DQR–dedicated server. Event validation is performed.

To access the physics related to the neutron star merger or supernovae, it is important to
perform follow-up observations using electromagnetic telescopes immediately after locating the
GW candidate, e.g., GW170817 [15]. The data from GW observatories (LIGO, Virgo, and KAGRA)
are collected and clustered at the California Institute of Technology (CIT). The low-latency search
pipelines analyze the data set and provide a GW alert with a latency of a few seconds. Details,
such as the mass of the binary star, merger time, estimated sky map, and signal-to-noise ratio, are
registered in the database (known as GraceDB) to share with the collaborators.

The task of DetChar is to provide the data quality report (DQR) based on the time of the GW
candidate. In the past observation run (O3), the DQR was organized by LIGO and Virgo. The
DQR played an important role in the number of retracted candidates and increased the confidence
of candidates for the astronomers of electromagnetic telescopes.

With regard to the next observation run, LVK DetChar plans to introduce tools standardized
across collaborations and launch the DQR process automatically triggered by the GW alert at each
observatory site. Figure 3 shows DQR process. We have participated in the development of DQR
tools and have contributed to the operational test with LIGO and Virgo DetChar members.
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4. Summary

KAGRA is a cryogenic underground GW detector comprising a laser interferometer; it is
located in Kamioka, Gifu, Japan. The O4 run has started from 25, May 2023. KAGRA has been in
a stable observation mode since 24 May. KAGRA resumed commissioning from June 21, 4 weeks
after the start of the first half of O4 (called O4a) and will restart observation (O4b) in spring 2024.
For the first detection of GW by KAGRA, the DetChar group for KAGRA performed two tasks.

First, we contributed the improvement of sensitivity and the stability of the interferometer
controls. We investigated the noise origin and path contaminated by the external noise by analyzing
multiple control signals and witness sensors for noise hunting. To monitor multiple sensors and
control signals, we have provided the data–monitoring tools, such as the summary page to analyze
the long-term stability and the web-based tool for simple data analysis.

Second, we provide the data quality information to prevent the false detection of GW in
analyzing the data. In GW searches, the strain data containing known disturbances are tagged
by DQ flags. The tagged data were removed from the input data for searching GWs to reduce
the false event rate. For O3GK data, the basic operating status of the interferometer and other
known noise issue information were provided. Toward the O4 run, we developed a software tool
to rapidly generate DQ flags. Moreover, we started the project to provide the DQR of the GW
candidate triggered by low-latency search. The infra tools for the DQR was standardized over the
LVK collaboration.
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