Control noise reduction of cryogenic suspension in KAGRA

Masahide Tamaki* on behalf of the KAGRA collaboration

Institute for Cosmic Ray Research, The University of Tokyo,
5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba, Japan

E-mail: tamaki83@icrr.u-tokyo.ac.jp

In gravitational wave detectors, the laser is used to observe how the distance between mirrors changes due to space distortions caused by gravitational waves. The displacement of the mirrors is minute, so the mirrors must be sufficiently isolated from ground vibrations to achieve the required sensitivity. Therefore, the main mirrors are suspended by nine-stage pendulums in KAGRA, the gravitational wave detector in Japan. In such a pendulum-based vibration isolator, the mirror oscillates significantly at the resonant frequency. Hence we need the control system to damp the resonances, but the noise from the sensors used in such a control system can be a problem. In fact, the sensitivity of KAGRA was limited by the noise from the cryogenic payload control system at 10-50 Hz in the previous observation. Therefore, a low-noise control filter was designed and implemented for use during the previous observing run. As a result, the control noise of the cryogenic payload at 10-100 Hz was reduced by 2-3 orders of magnitude, and the target sensitivity for the O4 observing run was achieved at low frequency (below 100 Hz).

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/
1. Introduction

Gravitational waves are space-time ripples derived from general relativity, and their existence was predicted by Albert Einstein in 1916 [1]. In 2015, gravitational waves from black hole binary mergers were directly detected for the first time by the Advanced LIGO detectors [2], finally proving their existence. In August 2017, the Advanced Virgo detector has joined the observations, and many gravitational waves from compact binary mergers have been detected [3]. In recent years, follow-up observations with gamma rays, X-rays, and neutrinos, together with gravitational wave information, have provided many new insights into the origin of heavy elements and the formation mechanism of gamma-ray bursts, information that was not available before. The multi-messenger observation, which aims at solving mysteries through the cooperation of observatories with different observing means, is developing, and there are high expectations for the gravitational wave observation to serve as a starting point for such observations [4]. Under these circumstances, the gravitational wave detector in Japan KAGRA started observations with LIGO (O4 observing run) in May 2023.

Laser interferometric gravitational wave detectors such as LIGO, Virgo, and KAGRA use lasers to observe minute changes in mirror spacing due to spatial distortions caused by gravitational waves. Because the displacement of the mirrors is minute, it is necessary to suppress the effect of ground vibration in order to achieve high sensitivity. Therefore, the ground vibration transmitted to the mirror at frequencies higher than the resonant frequency is reduced by suspending the mirror with a multi-stage pendulum-type suspension system. In addition, the mirror is cooled down to 20 K in KAGRA for the reduction of thermal noise [5]. The suspension for it is called cryogenic payload.

On the other hand, the ground vibration transmitted to the mirror is amplified at the resonant frequency of the pendulum, so it is necessary to control the pendulum to damp the resonances. However, the more the resonances are damped, the more the electrical noise from the sensor used for control (control noise) limits the sensitivity at low frequency [6]. Therefore, we needed to improve the control to reduce the control noise and achieve the target sensitivity in the O4 observing run. This paper begins with a brief introduction of KAGRA and the cryogenic payload, then describes the damping control and control noise. We then present our efforts to reduce the control noise and the results.

2. Cryogenic Payload in KAGRA

2.1 Main Suspension System in KAGRA

KAGRA is a laser interferometric gravitational wave detector with a baseline length of 3 km located in Kamioka-cho, Hida City, Gifu Prefecture, Japan. KAGRA has sapphire mirrors which are cooled down to 20 K to reduce thermal noise and is operated in an underground environment to reduce the influence of ground vibrations [7]. To further reduce the effects of ground vibration, we use a multi-stage pendulum-type suspension system, which can reduce the vibration transmitted to the mirror.

Depending on the application, KAGRA uses three different types of suspensions. The largest suspension, which is called the Type-A suspension, is used for the main sapphire mirrors and consists of nine stages, with a total height of 13.5 meters (Figure 1). KAGRA has four Type-A
suspensions as shown in the figure. The top five stages of the Type-A suspension are called Type-A tower which is at room temperature, while the bottom four stages are called cryogenic payload which is cooled in the cryostat.

![Figure 1: Type-A suspension in KAGRA. CG illustration of KAGRA layout is by Rey Hori.](image1)

2.2 Cryogenic Payload

![Figure 2: Cryogenic payload in KAGRA. The photo of actual payload is taken by Rohan Mehra.](image2)

Cryogenic payload in KAGRA is a four-stage pendulum structure with platform (PF), marionette (MN), intermediate mass (IM), and test mass (TM) from the top (Figure 2). In addition, the MN, IM, and TM are equipped with a recoil masses which can provide an actuation force that is isolated from ground disturbances [8].
As for the sensors on cryogenic payload, the MN and the IM are equipped with photo-reflective displacement sensors to monitor the relative displacement between the mass and the recoil mass for each degree of freedom [8]. Furthermore, angular sensing optical levers are installed on the PF, the MN, and the TM to monitor the angular motion of the masses relative to the ground. In addition, they are also equipped with a length sensing optical lever to sense the motion along optical axis of the interferometer [9].

The displacement signal captured by these sensors is passed through a digital filter to the actuators [10]. The actuator applies the force to the mass to realize damping control, which is discussed in the next section.

3. Damping Control and Control Noise

3.1 Damping Control for Suspension System

In the case of a multi-stage pendulum vibration isolation system, a high vibration isolation ratio can be achieved at frequencies above the resonant frequency (left of Figure 3). On the other hand, the vibration transmitted to the mirror is amplified at the resonant frequency. In this case, the interferometer cannot maintain a stable state and the observation cannot be performed. Therefore, a damping control that damps the vibration at the resonant frequency is required.

Damping control is a feedback control in which the displacement of the mirror is locally detected by a sensor, and a force to cancel it is applied to the mirror by an actuator (right of Figure 3). In other words, when a certain force (disturbance) is applied to the suspension system, a sensor detects the response of the suspension system and sends a signal to the digital system. In the digital system, the signal is sent to the actuator through a filter to cancel the effect of the disturbance.

To damp the resonant peak, we can design a high-pass filter i.e. a filter that differentiates the signal received from the photosensor in a certain region of the resonant frequency. On the other hand, at high frequencies above the control band, the gain is reduced by a low-pass filter to suppress
the effect of noise. Furthermore, we should be careful to provide sufficient phase margin at the frequency where the gain of the open loop transfer function is 1 (Unity Gain Frequency, UGF).

3.2 Control Noise

![Figure 4: Control noise during previous observation [6].](image)

Although a low-pass filter is applied at high frequencies, sensor noise is still a problem in feedback control. In addition, a suppression of vibration and a reduction of noise cannot be achieved simultaneously. In other words, the more we try to suppress the vibration, the more the noise is introduced, or vice versa, which is a major problem.

In fact, in the previous observation (O3GK), there was a problem that the noise from the control system of the cryogenic payload limited the sensitivity around 10 to 50 Hz [6]. The Figure 4 shows this, where the black line representing the sum of all noise and the light blue line representing the control noise of the cryogenic payload completely overlaps at 10 to 50 Hz. This means that the control noise of the cryogenic payload limited the sensitivity in this frequency band.

4. Control Noise Reduction

We introduced a new method of switching the controls depending on the state of the interferometer, thereby reducing the noise during the observation.

An interferometer is not ready for observation immediately after assembly. In the observation-ready stage, we want to control the position and angular of the mirror to quickly create an observable state, so we use a control that emphasizes vibration suppression, even if the noise may be a little louder. In the previous experiment, the observation was performed under this control, resulting in a large control noise as described above. However, in the observation stage, it is important to keep
the stability and noise level low. Therefore, we designed a control filter (hereinafter referred to as "OBS filter") that reduces the effect of noise while keeping the minimum requirement for vibration suppression, and switched to this control during the observation phase.

As an example of an observation filter, we present the control of the pitch direction of ITMX (Figure 5). Note that pitch is one of the six degrees of freedom of the rigid body, and is the direction in which the mirror bends. The main modification is to apply an elliptic low pass filter with phase margin more than 20° at the unity gain frequency to reduce the gain at frequencies with higher gain in the observable-ready stage. This type of control modification has also been applied to other cryogenic suspension systems.

Figure 5: Changes in open loop transfer function due to control update (ITMX Pitch). Blue line shows observation-ready stage, and red line shows observation stage.

The control noise measurements were performed using the FPMI configuration. Here, FPMI is a Michelson interferometer with a Fabry-Perot cavity in its arm, and its schematic diagram is shown in Figure 6. In this FPMI, the gravitational wave signal is a differential signal in the arm, called the DARM signal, and is obtained from the photo detector shown in the Figure 6. A feedback signal is then fed back to the ETMX to drive the ETMX to maintain the differential displacement of the arms. To measure the control noise in the FPMI configuration, we then intentionally oscillated each suspension in each degree of freedom and measured the transfer function from that motion to the DARM signal. This transfer function was measured by intentionally shaking the suspension, but the noise from the sensors used for control is always present even when the suspension is not shaken in this way. By multiplying the amplitude spectral density of the sensor output without shaking by the transfer function obtained earlier, the control noise can be plotted on the sensitivity curve. Moreover, the total control noise can be calculated by summing squares for each suspension since the control noise of each suspension is uncorrelated.
Figure 6: Schematic view of FPMI.

Figure 7 shows the result of control noise measurement. The control noise line changed from green to orange, and this means control modification successfully reduced the control noise by $2 \sim 3$ orders of magnitude. Moreover, this allowed us to achieve the target sensitivity of 10 Mpc for the O4 observing run. In addition, we were able to verify that the interferometer operated stably for at least more than 1 day. The operation test was terminated due to interferometric work before the observation, but without that, the interferometer would have remained stable for a much longer time. In any case, the new control was stable enough.

Figure 7: Control noise reduction by OBS filter.

5. Summary and Outlook

In summary, the newly designed control system has successfully reduced the control noise in the cryogenic payload by $2 \sim 3$ orders of magnitude while maintaining stable interferometer
operation. This also enabled KAGRA to achieve its target sensitivity at low frequencies for the O4 observing run. However, as shown in Figure 7, we need to further reduce the control noise by $2 \sim 3$ orders of magnitude to achieve the target sensitivity for the next observation.

Therefore, as a future prospect, we would like to achieve the final target sensitivity of KAGRA at low frequencies by reducing the control noise. To achieve this, we should develop the new control system. In the current control system, the control parameters are determined by empirical design and adjusted by human hands. However, it should be possible to build an optimal control system based on numerical simulation. For example, a possible approach would be to decompose the pendulum vibration into modes based on a numerical model and then perform feedback control according to the shape of the vibration modes. This method is suitable for KAGRA suspensions, which are multi-degree-of-freedom oscillating systems and should be able to optimize the trade-off between control performance and noise more efficiently. In this case, it may be effective to introduce the H_{∞} method to provide a robust control at the same time even when there are errors between the model and actual measurements. In addition, the sensors used for the control will need to be developed with higher performance, so we should work on that as well.

References

Control noise reduction of cryogenic suspension in KAGRA

Masahide Tamaki

Full Authors List: KAGRA Collaboration

1Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
2Gravitational Wave Science Project, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan
3Advanced Technology Center, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan
4Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
5Research Center for the Early Universe (RESCEU), The University of Tokyo, 113-0033, Japan
6Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 238 Higashi-Moizumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan
7Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
8LIGO Hanford Observatory, Richland, WA 99352, USA
9The Graduate University for Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka City, Tokyo 181-8588, Japan
10Institute of Science and Technology Information (KISTI), 245 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
11Department of Astronomy, Beijing Normal University, Xinjiekouwai Street 19, Haidian District, Beijing 100875, China
12Department of Physics, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
13Institute of Physics, National Yang Ming Chiao Tung University, 101 Univ. Street, Hsinchu, Taiwan
14Kamioka Branch, National Astronomical Observatory of Japan, 238 Higashi-Moizumi, Kamioka-cho, Hida City, Gifu 506-1205, Japan
15Department of Physics, National Tsing Hua University, No. 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
16Faculty of Science, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555, Japan
17Institute for Cosmic Ray Research, KAGRA Observatory, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan
18Department of Electrophysics, National Yang Ming Chiao Tung University, 101 Univ. Street, Hsinchu, Taiwan
19Department of Physics, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan
20Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan
21Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
22Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka City, Fukuoka 814-0180, Japan
23College of Industrial Technology, Nihon University, 1-2-1 Izumi, Narashino City, Chiba 255-8575, Japan
24Faculty of Engineering, Niigata University, 8050 Ikarashi-2-no-cho, Niigata City, Niigata 950-2181, Japan
25Institute of Astronomy, National Tsing Hua University, No. 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
26Department of Physics, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan
27Department of Physics, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA
28Department of Astronomy and Space Science, Chungnam National University, 9 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
29Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan Road 5, Haidian District, Beijing 100871, China
30Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP), Osaka Metropolitan University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka City, Osaka 558-8585, Japan
31National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, China
32School of Astronomy and Space Science, University of Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, China
33Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
34Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan
35Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba City, Ibaraki 305-0801, Japan
Control noise reduction of cryogenic suspension in KAGRA

Masahide Tamaki

36 School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA, UK
37 Department of Physics, Nagoya University, ES building, Furocho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
38 Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
39 Department of Computer Simulation, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam-do 50834, Republic of Korea
40 Technology Center for Astronomy and Space Science, Korea Astronomy and Space Science Institute (KASI), 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea
41 Department of Physics, University of Trento, via Sommarive 14, Povo, 38123 TN, Italy
42 National Center for High-performance computing, National Applied Research Laboratories, No. 7, R&D 6th Rd., Hsinchu Science Park, Hsinchu City 30076, Taiwan
43 LIGO Laboratory, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
44 Institute for Photon Science and Technology, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
45 Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara City, Kanagawa 252-5258, Japan
46 Faculty of Law, Ryukoku University, 67 Fukakusa Tsukamoto-cho, Fushimi-ku, Kyoto City, Kyoto 612-8577, Japan
47 Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
48 Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
49 National Institute for Mathematical Sciences, 70 Yuseong-daero, 1689 Beon-gil, Yuseong-gu, Daejeon 34047, Republic of Korea
50 Graduate School of Science and Technology, Niigata University, 8050 Batarashi-2-no-cho, Nishi-ku, Niigata City, Niigata 950-2181, Japan
51 Niigata Study Center, The Open University of Japan, 754 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8122, Japan
52 Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College, 888 Nishikata-ko, Nagaoka City, Niigata 940-8532, Japan
53 Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi City, Chiba 274-8510, Japan
54 Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
55 Institute for Quantum Studies, Chapman University, 1 University Dr., Orange, CA 92866, USA
56 Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata City, Osaka 573-0196, Japan
57 Research Center for Space Science, Advanced Research Laboratories, Tokyo City University, 8-13-1 Higashifushimi, Setagaya, Tokyo 158-0082, Japan
58 Department of Physics, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan
59 Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582, Japan
60 Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyou-ku, Kyoto City, Kyoto 606-8502, Japan
61 National Institute of Technology, Fukui College, Geshi-cho, Sabae-shi, Fukui 916-8507, Japan
62 Department of Communications Engineering, National Defense Academy of Japan, 1-10-20 Hashirimizu, Yokosuka City, Kanagawa 239-0866, Japan
63 Department of Physics and Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747, Republic of Korea
64 School of Physics and Technology, Wuhan University, Bayi Road 299, Wuchang District, Wuhan, Hubei, 430072, China