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Machine learning applications for the study of AGN
physical properties using photometric observations
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Enlarging the sample and sky coverage of AGN observations with reliably estimated physical
parameters is particularly important for multimessenger astronomy, where signals from individual
sources are often weaker, such that searching for correlations between a population class (e.g,
AGN) and a messenger (e.g., neutrinos or cosmic rays) is common. However, knowledge of
physical parameters of AGN, such as the mass of the central black hole MBH and the Eddington
ratio 𝜆Edd, are limited by the feasibility of large spectroscopic follow-up surveys. We show an
application of machine learning (ML) techniques to reconstruct AGN physical parameters using
multi-wavelength photometric observations only, in the soft X-ray, mid-infrared, and optical bands,
as a way to increase the number of characterized AGN. We present a catalogue of 21 364 newly
reconstructed AGN, with redshifts ranging from 0 < z < 2.5. The redshift 𝑧, the bolometric
luminosity LBol, MBH, 𝜆Edd, and AGN class (obscured or unobscured) are estimated with their
associated uncertainty, using a Support Vector Regression and Random Forest algorithms.
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1. Introduction

Active Galactic Nuclei (AGN), the most luminous sources in the Universe, consist of a central
supermassive black hole (SMBH) around which an accretion disk is formed. They are favored as a
source of cosmic ray acceleration and neutrino production [1–3]. Collecting a large and unbiased
sample of AGN physical parameters, such as their redshift 𝑧, SMBH mass MBH and Eddington
ratio 𝜆Edd, is an important task for multimessenger studies. Traditionally, spectroscopic techniques
are needed to derive these variables, but the discrepancy between photometric observations and
spectroscopic follow-up of AGN remain large. We report on a new study using multi-wavelength
photometric observations and machine learning (ML) regression to reconstruct fundamental pa-
rameters for 21 364 AGN, and ML classification to distinguish Type 1 (unobscured) and Type 2
AGN (obscured).

2. Data

Our goal is to compile the largest possible catalogue of non-blazar AGN sources observed in the
X-ray, optical and infrared (IR) bands, but have not been followed-up spectroscopically. Crucially,
a training sample is needed, for the ML model to learn the correlations between photometric and
spectroscopic parameters: we use the recent SPIDERS-AGN spectroscopic survey [4–6], which
has released a sample of 7616 Type 1 AGN with information on 𝑧, LBol, MBH, 𝜆Edd. The multi-
wavelengths surveys used to construct the inputs parameters for the catalogue of 21 364 sources to
be reconstruct by the ML model are listed in Table 1. All sources were observed by WISE and
ROSAT or XMM, and cross-matched in a previous study [7]. We require all AGN to have been
observed in SDSS, which limits the study to a quarter of the sky. A subset of 9944 sources were
already observed spectroscopically in previous SDSS runs, and have added information on their
AGN classification and spectroscopic 𝑧. The left panel of Fig. 1 shows the spatial distribution of
the training (SPIDERS-AGN) and the compiled catalogue sources.

Observation type Instrument Spectral band Input provided 𝑁AGN 1 Reference

Soft X-ray ROSAT 0.1-2.4 keV
X-ray flux and err.

19 896 [8]

XMM-Newton 0.2-12 keV 1468 [9]

Mid-Infrared photometry WISE 3.4 - 22 µm
W1,W2,W3,W4

mag. and err.
21 364 [10]

Optical photometry SDSS I-IV 3543-9134 Å ugriz mag. and err. 21 364 [11]
Gaia 330–1050 nm Flux and err. [? ]

Optical spectroscopy SDSS I-III 380–920 nm Classification 9944 [5]
see Ref. redshift [12]

Table 1: Catalogues and their references used to build the multiwavelength inputs to the machine learning
algorithm.

3. Pseudo-set method

In both the classification and regression ML tasks, we make use of the measurement uncertain-
ties that are associated with all the photometric observations presented in Table 1. We adopt the
method of [13] to create 200 “pseudo-sets” for each single AGN source, based on the smearing of
each input value 𝜇value by its measurement error 𝜎err, assuming 𝜎err to be gaussian. The right panel
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Figure 1: Left: Spatial distribution of sources in equatorial Mollweide projection for the for the selected
AGN sample (in blue) and the SPIDERS AGN sample (yellow). The requirement for all sources to have been
observed by SDSS constrain their distribution to the Northern Sky footprint. The galactic plane is shown as
a gray line. Right: Distribution of W1 input smeared by the measurement uncertainty for a single source.
Each point is drawn from a normal distribution centered at the given catalogue input feature 𝜇value (black
dashed line) and extending to ±3𝜎err (blue dotted lines), from the given photometric measurement error.

of Fig. 1 shows such an example for the IR W1 band. Drawing randomly from each independent
“smeared” input, we can create 𝑁 pseudo-sets for each AGN, reconstructing them 𝑁 times, and
thus having a handle on the performance and reconstruction of the ML classification and regression
tasks.

4. AGN type classification

Type 2, or obscured AGN, are systems where the emission from the accretion disk gets absorbed
by the surrounding dusty torus, suppressing the emission in certain wavelengths [14]. Traditionally,
Type 2 AGN are identified spectroscopically looking narrow emission lines. In our study, we use
the 9944 sources with a classification to train a random forest (RF) model 𝑁 times. The ratio of
Type 1/ Type 2 AGN in the training sample is highly imbalanced (16:1), since all sources were soft
X-ray selected, a band that is highly suppressed in obscured AGN. To help the model identify the
minority class, we undersample the majority class to reach a 1:1 training ratio. The left panel of
Fig. 2 shows the confusion matrix for the validation set: the RF selects Type 2 AGN with a 93%
efficiency. The effect of the pseudo-set method in classification of the unlabeled data is shown
in the right panel of Fig. 2: the reconstructed obscuration for each is then the average of all 𝑁
reconstructions, 𝜇obscuration, with its associated standard deviation value 𝜎obscuration. We establish
a custom decision threshold 𝑡 for an AGN source to be considered as eiher Type 1 or Type 2. To
enhance the purity of the classification, we set 𝑡=0.8, such that an AGN source is considered of
Type 2 if 𝜇obscuration > 0.8 and of Type 1 if 𝜇obscuration < 0.2. Doing so, we find that 7852 are
marked as Type 1, 5228 as Type 2, and 2448 as “ambiguous”. This corresponds to a 𝑛1/𝑛2 ratio of
∼ 1.5:1, which is markedly smaller than the 16:1 ratio from the labeled dataset, due to the bias of
spectroscopic follow-ups towards brighter optical sources in the training data.
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Figure 2: Left: Confusion matrix for training ratios 1:1. The undersampled (1:1) classifier is much more
apt to identify Type 2 AGN, while still performing well in the identification of Type 1 AGN (91% and 87%
efficiency respectively). Right: Histogram of the averaged reconstructed obscuration values for all unlabeled
data. While the majority of sources have an obscuration value equal to 0 or 1, a non-negligible number of
them lie in the region between the two hard values: a hard classifier, softened

5. Regression for AGN properties estimation

We now use a Support Vector Regressor (SVR) model to predict the parameters 𝑧, 𝐿Bol, 𝑀BH,
and𝜆Edd, using as inputs the features presented in Table 1. Since redshift measurements are available
for almost half of the 21 364 AGN sources (see Sec. 2), but not for the other, we train and test two
separate models, which we call 𝑀𝐿w/z, where 𝑧 is added as an input, and 𝑀𝐿wo/z, where 𝑧 is one
of the outputs. Just as it was done for the classification task (see in Sect. 4), we use the 𝑁=200
pseudo-sets to propagate both the uncertainties in the photometric measurements in the training and
reconstructed datasets, as well as fluctuations of the regressor’s reconstruction.

Many ML applications are readily available to use for such a supervised learning task notably
through the scikit − learn python library [15]. We use a single output, multi-step chain regres-
sion, in order for the ML model to learn the correlations between target parameters. In the first pass
of the chain regressor, the initial 18 inputs are used to predict the first output, the redshift 𝑧. In the
next pass, the model takes 18+1 inputs, the extra-one being the predicted 𝑧, and outputs the next
parameter, 𝐿Bol, and so on.

5.1 Prediction performance

Fig. 3 summarizes the performance of the SVR for the 𝑀𝐿w/z (left column) and 𝑀𝐿wo/z (top
panel and right column) cases. From these response matrices, we first note that the quality of the
reconstruction is higher when the redshift of the source is known and used as an input parameter.
In general the performance worsens slightly as we move into the tails of the bin edges, and the
data sample to train on become scarce: the reconstructed parameters tends to be overestimated for
low values of the true parameter, while they are underestimated for high values. We quote in the
following section values taken from the mean pull distributions for all training sources, taking all
𝜇true − 𝜇pred values, and fitting a gaussian to derive 𝜇pull ± 𝜎pull.
For 𝑀𝐿wo/z, the redshift prectiction (top) yields an accuracy𝜎NMAD=1.48×median(| Δ𝑧- median(Δ𝑧) |
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/(1 + 𝑧true) of 7.1%, with an outlier rate of 3.48%, performing just as well as the estimation of pho-
tometric redshifts using AGN SDE templates [16]. The worsening reconstruction quality for higher
𝑧 can be explained by the fewer number of sources at such redshifts found in the SPIDERS-AGN
training sample.
The bolometric luminosity 𝐿Bol, being the convolution of multiple wavelength observations presents
the first moderate challenge for the model to predict: it however gives reliable reconstructed values,
with 𝜎pull = 0.12 (0.31) for 𝑀𝐿w/z (𝑀𝐿wo/z).
When it comes to estimations of 𝑀BH, the knowledge of 𝑧 of the source is the most determining
factor for the performance. The width of the pull 𝜎pull goes from 0.54 to 0.66 in units of log(𝑀⊙).
However, we see no such discrepancy in the prediction of the Eddington ratio 𝜆Edd, even though
both parameters 𝐿Bol and 𝑀BH (𝜆Edd ∝ 𝑀BH

𝐿Bol
): this is due to the high level of correlation between

predicted parameters in the case of 𝑀𝐿wo/z, leading to a high covariance error, and a decreased
total propagated errors.

5.2 Reconstruction of new sources

Once the robustness of the prediction of the target parameters has been evaluated, we reconstruct
the ∼22 000 sources without spectroscopic information. Just as it was done for the training sample,
all AGN were reconstructed 𝑁=200 times with the method outlined in Sec. 3. The mean 𝜇reco and
standard deviation 𝜎reco from a gaussian fit to the posterior probability distribution are recorded for
each source. Encoded in 𝜎reco are pointers to the regressor’s ability to reconstruct AGN that are
further away from the input range, revealing differences between population type. Fig. 4 presents the
distributions of the reconstruction uncertainty 𝜎reco on the 𝑀BH parameter for Type 1 and 2 AGN,
with and without known 𝑧. We have reconstructed the 5362 sources in our catalogue identified as
Type 2 AGN, using the classifier and criteria presented in Sect. 4, although the ML-model was
trained with Type 1 AGN only. The regressor is able to reconstruct the 𝑀BH Type 2 AGN with
known 𝑧 (purple and blue distributions), but is unable to do so for Type 2 AGN with unknown z,
as exemplified by the flat green curve, which is characteristic of reconstructed noise. For these
sources, only the redshift 𝑧 is reconstructed. We take a look at the AGN classified as Type 1, as
that population follows the training dataset more closely. The left panel of Fig. 5 presents the AGN
number source density over a wide range of redshifts for several bins in bolometric luminosity.
Reconstructed Type 1 AGN are shown in full circles, and SPIDERS AGN are represented in open
circles for the same luminosity bins. The same trends are observed in the spectroscopically observed
and reconstructed samples: the number density of lower-luminosity AGN peaks later in cosmic
time than that of more luminous ones. This effect is known as AGN downsizing (see review [17]).
The right panel of Fig. 5 shows the black hole masses of these sources, using the same binning in
𝐿Bol. Not only does the scaling trend of increasing 𝑀BH with 𝐿Bol remain, but the peaks of the
distribution is also coincident between the spectroscopically observed and ML-reconstructed Type
1 AGN samples, a proof that the reconstructed sources match the training ones when binned in
multidimensional space.
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Figure 3: Normalized performance matrices for ML-estimator with known redshift as an input (𝑀𝐿w/z,
left) and without (𝑀𝐿wo/z, right). The true and reconstructed parameters are plotted on the x and y axis,
respectively. The error on the reconstruction is used as a weight to the histogram.
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Figure 4: Uncertainty 𝜎reco on the log of the reconstructed black hole mass 𝑀BH for Type 1 and 2 AGN,
with and without 𝑧 information (estimated with 𝑀𝐿w/z and 𝑀𝐿wo/z respectively). The 𝜎̃ values correspond
to the median of their distributions. The mass of the black hole for sources without 𝑧 identified as Type 2
AGN (in green) cannot be reconstructed, as proven by the flat, structureless uncertainty PDFs.
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Figure 5: (Left) AGN downsizing: comoving number density vs. redshift for Type 1 AGN from this work’s
catalogue (full circles) and the SPIDERS AGN catalogue (open circles) for different bins of 𝐿Bol in units of
log(erg s−1). (Right) Distribution of 𝑀BH for the same bins of bolometric luminosities, for the reconstructed
AGN (colored bars) and SPIDERS AGN (colored steps). A flat ΛCDM cosmology with 𝐻0 = 70 km s−1

Mpc−1, ΩM = 0.3, and ΩΛ = 0.7 is assumed to calculate the comoving number density.
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6. Summary and catalogue release

The result of the work presented in this paper has been compiled into a single catalogue available
in https://www.zeuthen.desy.de/nuastro/ML_reconstructed_AGN_catalogue/. This
includes the 21 364 reconstructed sources, with results from the obscuration classifier and estimation
of 𝑧, 𝐿X, 𝐿Bol, 𝑀BH, 𝐿Edd and 𝜆Edd with associated reconstruction uncertainties. For 4457 sources,
of Type 2 AGN without previous 𝑧 information, entries for 𝐿X, 𝐿Bol, 𝑀BH, 𝐿Edd and 𝜆Edd are left
blank. The release of this new dataset is of particular use for multimessenger astronomy studies,
where one needs to know these physical parameters for a large sample of sources while maximizing
the sky coverage.
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