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The origin of Galactic cosmic rays (CR) is still a matter of debate. Diffusive shock accelera-
tion (DSA) applied to supernova remnant (SNR) shocks provides the most reliable explanation.
However, within the current understanding of DSA several issues remain unsolved, like the CR
maximum energy, the chemical composition and the transition region between Galactic and extra-
Galactic CRs. These issues motivate the search for other possible Galactic sources. Recently,
several young stellar clusters (YSC) have been detected in gamma rays, suggesting that such objects
could be powerful sources of Galactic CRs. The energy input could come from winds of massive
stars hosted in the clusters which is a function of the cluster total mass and initial mass function
(IMF) of stars. In this work we evaluate the total CR flux produced by a synthetic population of
YSCs assuming that the CR acceleration occurs at the termination shock of the collective wind
resulting from the sum of cluster’s stellar winds. We show that the spectrum produced by YSC
can significantly contribute to energies above ≳ 100 TeV if the diffusion inside the wind-blown
bubble is Bohm-like and the spectral slope is harder than the one produced by SNRs.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:giovanni.morlinio@inaf.it
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
7

Cosmic rays from young stellar clusters G. Morlino

1. Introduction

The origin of Galactic Cosmic Rays (GCRs) in the knee region is still debated in the community.
Recently, young and massive stellar clusters (YMSCs) have been suggested as alternative candidate
sources to supernova remnants (SNRs). The energy input could come from the cluster stellar winds
which provide, during a lifetime of several million years, an energy comparable with respect to SNR
outputs [1]. In addition, YMSCs could offer favorable conditions for particle confinement. The
stellar winds, in fact, generate a wind-blown bubble around the cluster with a typical size of tens of
pc, where the magnetic turbulence may be enhanced with respect to the Galactic interstellar medium
(ISM), increasing the particle diffusion time and, consequently, the possibility to achieve very high
energies. Besides energetic considerations, acceleration of particles from the wind of massive stars
appears to be a necessary component to explain the 22Ne/20Ne anomaly in CR composition [2]:
the enhancement observed with respect to Solar abundances requires acceleration from a carbon-
enriched medium rather than from the standard ISM at a few percent level. The relative contribution
of these different source populations (SNRs and YMSC) to the observed CRs is yet to be clarified,
in particular in the region across the knee around few PeVs.

In recent years, diffuse gamma-ray emission has been detected in coincidence with many young
massive stellar clusters (YMSC) by several gamma-ray facilities, like Fermi-LAT, H.E.S.S. [3] and
LHAASO. These findings strongly supporting the idea that some acceleration mechanism is taking
place there. Detailed morphological and spectral analysis suggest a continuous injection of possible
hadronic origin [4, 5]. The Cygnus cocoon has even been observed at the highest energies ever
probed by gamma-ray astronomy: a 1.4 PeV photon was detected from LHAASO [7], strengthen
the idea that stellar clusters may act as PeVatrons.

The exact location where particle acceleration takes place in YMSCs is still unclear. For
compact and young systems, the so-called wind termination shock (WTS) [8] is expected to be
strong enough to enable particle acceleration at such high energies [9]. Alternatively, stochastic
acceleration might be driven by the highly turbulent environment of the cluster, particularly in its
core [10], further amplified once SN explosions start to occur [11]. In this work we want to estimate
the contribution of YMSCs to the Galactic CR flux before supernova start to explode. Hence, we
will consider only acceleration at the cluster WTS. For each SC, we build a stellar population,
which properties in terms of wind speed and mass loss rate are used to determine the size of the
wind-blown bubbles, as described in §2. Then, we will integrate the WTS contribution over the
entire population of Galactic SCs. However, the SC population is reasonably well know only within
∼ 2 kpc from the Sun and, to overcame this lack of information, we will build a synthetic population
of SC based on properties of local clusters, as explained in §3. Finally, in §4 we summarize the
acceleration model of [8] and we discuss the results in §5. The reader is also referred to a companion
work presented in the same conference [12] where the same approach is used to estimate the SC
contribution to the Galactic diffuse gamma-ray emission.

2. Properties of stellar winds and wind-blown bubbles

To describe the bubble structure around a SC, for each star we need two quantities, the wind
velocity and the mass loss rate and the star age. In the following we will only deal with main
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sequence stars, neglecting the contribution from the stellar final stages, like Wolf-Rayet, which,
however, may contribute up to ∼ 30% of the wind power in a SC [1]. In the stellar wind theory, the
wind velocity is generally written as [15]

𝑣w,★ = 𝐶 (𝑇eff)𝑣esc = 𝐶 (𝑇eff) [2𝑔𝑅★ (1 − Γ)]1/2 (1)

where 𝑣esc is the escape speed form the star, 𝑔 is the surface gravity and 𝑅★ the stellar radius. The
factor Γ = 𝐿★/𝐿Edd takes into account the reducing effect of Thomson scattering on the gravitational
potential. The wind velocity is in general larger than 𝑣esc due to the radiation pressure from the star.
Such an effect is accounted for by the function𝐶 which depends on the effective surface temperature

of the star which is, in turn, estimated using the Boltzmann law: 𝑇eff =

[
𝐿★

4𝜋𝑅2
★𝜎𝑏

]1/4
, 𝜎𝑏 being the

Boltzmann constant. 𝐶 ranges from 1 for 𝑇eff < 104 K up to 2.65 for 𝑇eff > 2 × 104 K. In this range
we assume a linear increase with 𝑇eff .

The stellar mass loss rate is a rather difficult quantity to constraint from observations. Stellar
evolution codes provide results which, however, depends on several quantities like the metallicity
and the the stellar rotation. For the sake of simplicity, here we use the approximate model by [16]
where the mass loss rate depends only on the stellar luminosity, mass and radius, and reads [for a
comprehensive discussion see also 4]:

¤𝑀★ = 9.63 × 10−15(𝐿★/𝐿⊙)1.42(𝑀★/𝑀⊙)0.16(𝑅★/𝑅⊙)0.81 M⊙ yr−1 . (2)

The stellar luminosity is only a function of its mass and it is taken from [4] and consists of a
smoothed broken power law mixing two different empirical mass-luminosity relations. The relation
between stellar radius and mass is given to first approximation by 𝑅★/𝑅⊙ = 0.85(𝑀★/𝑀⊙)0.67 [17].
We notice that the uncertainty in the mass-ratio relation translates into an uncertainty of only ∼ 15%
in the final cluster’s luminosity. For the purpose of this work, the properties of stellar winds can be
considered almost stationary during the main sequence lifetime, which last

log
(
𝑇age/yr

)
= 6.43 + 0.825 [log (𝑀★/120M⊙)]2 . (3)

After such a time, we assume that the stellar wind do not contribute anymore to the SC wind. We
stress again that the subsequent explosion of SNe from massive stars is neglected.

For the initial mass function (IMF) of star inside a cluster, we adopt the distribution from [18]
which is a broken power-law in several mass range, 𝜉★ = 𝐴𝑖 (𝑀cl)𝑀𝑘𝑖

★ , which reduces to a Salpeter
IMF for 𝑀 > 𝑀⊙ with 𝑘𝑖 = 2.35. The IMF for each cluster is normalized to give the SC total mass,
i.e.

∫ 𝑀★,max
𝑀★,min

𝑀𝜉★(𝑀★, 𝑀cl)𝑑𝑀 = 𝑀c. The minimum and maximum stellar mass are assumed to be
𝑀★,min = 0.08𝑀⊙ which is related to the minimum theoretical mass to support significant nuclear
burning and 𝑀★,max = 150 M⊙ that is the maximum observed stellar mass.

Once the stellar distribution is fixed, the properties of the SC collective wind can be estimated
from the mass and momentum flux conservation, integrating over all stellar winds. Hence, the final
SC mass loss rate and wind speed are:

¤𝑀c(𝑀c) =
∫ 𝑀★,max

𝑀★,min

¤𝑀★ 𝜉★(𝑀★, 𝑀c) 𝑑𝑀★ (4)

𝑣w,c =
1
¤𝑀c

∫ 𝑀★,max

𝑀★,min

¤𝑀★𝑣w,★ 𝜉★(𝑀★, 𝑀c) 𝑑𝑀★ (5)
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The bubble structure is described using the classical solution for adiabatic expansion [19]. Defining
the cluster age 𝑡 and the cluster luminosity 𝐿w,c = 1

2
¤𝑀c𝑣

2
w,c, as well as the ISM mass density 𝜌0,

the position of the TS is located at

𝑅s(𝑡) = 48.6
( 𝜌0

cm−3

)−0.3
( ¤𝑀c

10−4M⊙yr−1

)0.3 (
𝑣w,c

1000 km s−1

)0.1 (
𝑡

10 Myr

)0.4
pc (6)

while the bubble radius is

𝑅b(𝑡) = 174
( 𝜌0

cm−3

)−0.2
(

𝐿w,c

1037 erg s−1

)0.2 (
𝑡

10 Myr

)0.6
pc . (7)

Because stellar clusters born from giant molecular clouds, the local ISM density where their winds
expand is usually denser than the average Galactic ISM. Here we assume a reference value of
𝜌0 = 10 protons/cm3 identical for all SCs.

3. Stellar cluster distribution

The SC distribution in mass, time and position in the Galaxy is defined as

𝜉c(𝑀c, 𝑇, ®𝑟) =
𝑑𝑁

𝑑𝑇𝑑𝑀c𝑑Σ
, (8)

such that 𝜉c𝑑𝑇𝑑𝑀c is the number of SC with initial masses [𝑀c, 𝑀c + 𝑑𝑀c] formed per unit surface
𝑑Σ of the Galactic disk, at the position ®𝑟 , in the time interval [𝑇,𝑇 +𝑑𝑇]. Following [20] we assume
that the distribution is factorized in time and mass. Moreover, we also assume that the distribution
can be factorized in space such that the cluster initial mass function (CIMF) depends only by the
distance 𝑟 from the Galactic Centre through a normalization factor. Hence, we can write

𝜉c(𝑀c, 𝑇, ®𝑟) = 𝜓(𝑇) 𝑓c(𝑀c)𝜌c(𝑟) (9)

where 𝜓 is the SC formation rate (CFR), 𝑓c(𝑀c) is the CIMF and 𝜌c(𝑟) is the cluster radial
distribution, normalized to be unity at the Sun location, 𝑟⊙ = 8.5 kpc. To get the present distribution
of SC we should integrate in time Eq.(9), however, here we are interested in describing only the
young population of SC, with an age ≲ 10 Myr, because for larger ages the wind power drops
to negligible values and the production of CRs becomes irrelevant. [20] showed that the present
SC distribution in the solar neighborhood is compatible with a formation rate roughly constant
during the last ∼ 50 Myr. Hence the CFR can be assumed constant. Its value can be derived
from the work by [21] who obtained a surface star formation rate in the solar neighbourhood of
350 M⊙ Myr−1 kpc2 for clusters’ mass between 100 M⊙ and 3 × 104 M⊙. This corresponds to an
average CFR of 𝜓̄ = 0.63 kpc−2 Myr−1. For the CIMF, we follow [20] which derived for the SC
population in the solar neighborhood the following broken power-law:

𝑓c(𝑀c) =
{
𝑘1 𝑀

−1.63
c for 𝑀c,min < 𝑀c < 𝑀∗

c

𝑘2 𝑀
−1.24
c for 𝑀∗

c < 𝑀c < 𝑀c,max
(10)

where 𝑀c,min = 2.5 M⊙, 𝑀c,min = 6.3 × 104 M⊙, and 𝑀∗
c = 100 M⊙. The constants 𝑘1 and 𝑘2 are

obtained from the continuity at 𝑀∗
c and from the normalization condition

∫ 𝑀c,max
𝑀c,min

𝑓c(𝑀c)𝑑𝑀c = 1.

4



P
o
S
(
I
C
R
C
2
0
2
3
)
1
5
7

Cosmic rays from young stellar clusters G. Morlino

(a)

Sun
Norma

Carina-Sagittarius

Perseus

Crux-Scutum

(b)

Figure 1: Distribution of a single realization of stellar cluster population with age < 3 Myr, as a function
of Galactocentric radius (a) and in the Galactic plane (b). The solid line in (a) show the pulsar distribution
from Eq.(11) for comparison.

Due to strong stellar light extinction in the Galactic plane, the spatial distribution of SC is known
with sufficient accuracy only in the solar neighborhood (for a distance ≲ 2 kpc from the Sun [20]).
As a consequence 𝜌c should be derived from some other proxy. Here we use the distribution of
pulsars as derived by [22], which reads

𝜌𝑐 (𝑟) =
(
𝑟 + 𝑟⊙
2𝑟⊙

)1.64
exp

[
−4.01

𝑟 − 𝑟⊙
𝑟⊙ + 0.55kpc

]
(11)

where 𝑟⊙ = 8.5 kpc is the Sun position. On top of the radial distribution, we also account for the
distribution inside the Galactic spiral arms, using the same procedure that [23] adopted to evaluate
the distribution of SNRs. The spiral structure is realized by choosing a galactocentric distance 𝑟

from Eq.(11) and than by choosing randomly an arm. The polar angle is then determined so that
the cluster lies in the centroid of the arm. The actual position of the SC is computed by applying a
correction to the galactocentric distance drawn from a normal distribution centered at zero with a
standard deviation 0.07 𝑟 . Figure 1 shows the result of a single realization of SC population with
an age younger than 3 Myr, in terms of radial distribution from the GC and position in the Galactic
disk. The total number of clusters results to be ≃ 300.

4. Cosmic ray acceleration

Following [8], we assume that the acceleration of particles only occurs at the WTS developed
by the SC wind. The (relativistic) energy distribution function of accelerated particles located at
the shock position can be written as

𝑓𝑠 (𝐸) = 𝜉cr
𝐿w,c

𝑚𝑝𝑐
2

1
Λ𝑝

(
𝐸

𝑚𝑝𝑐
2

)−𝑠
𝑒−Γ (𝐸 ) , (12)
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where the normalization constant Λ𝑝 is defined such that the CR luminosity of the system is equal
to 𝜉cr times the wind luminosity, i.e. 𝐿cr ≡

∫
𝐸 𝑓𝑠 (𝐸)𝑢2 𝑑𝐸 = 𝜉cr𝐿𝑐,𝑤 , 𝑢2 being the downstream

wind speed. The solution in Eq. (12) has the typical power-law term ∝ 𝐸−𝑠, found for the case of
plane parallel shocks, plus an additional exponential function which accounts for the effects due to
the spherical geometry and to the escaping of particles from the bubble boundary, which determine
the maximum energy of the system. The exponential function has a complicated expression which,
however, can be approximated by the following formula:

𝑒−Γ (𝐸 ) ≃
[
1 + 𝐴(𝐸/𝐸max)𝑏

]
𝑒−𝑘 (𝐸/𝐸max )𝑐 . (13)

where 𝐴, 𝑏, 𝑘 an 𝑐 are fitting parameters, while 𝐸max is the nominal maximum energy defined by
the condition that the upstream diffusion length is equal to the shock radius, i.e. 𝐷1(𝐸max)/𝑢1 = 𝑅𝑠,
𝐷1 being the upstream diffusion coefficient. The diffusion properties inside the bubble represents
the most uncertain parameter of the system. Again following [8] we parameterise the diffusion
coefficient as 𝐷 = 𝑣/3 𝑟 𝛿

𝐿
(𝑟𝐿/𝐿𝑐)1−𝛿 , where 𝑟𝐿 is the Larmor radius, while 𝐿𝑐 ≃ 1 pc, is the

coherence length-scale of the magnetic field, assumed to be of the order of the SC core radius.
The exponent 𝛿 is equal to 1/3, 1/2 and 1 for Kolmogorov, Kraichnan and Bohm-like diffusion,
respectively. Finally, the magnetic field, 𝛿𝐵, used to evaluate the Larmor radius, is estimated
assuming that a fraction 𝜂𝐵 of the wind luminosity at the shock, is converted into magnetic
pressure, namely (𝛿𝐵2/4𝜋) 4𝜋𝑅2

𝑠𝑣𝑤 = 𝜂𝐵 ¤𝑀 𝑣2
𝑤/2. 𝜂𝐵 is expected to be of the order of few percent.

On a very general ground, the spectral slope of accelerated particles is determined by the
effective compression ratio at the shock, 𝜎, which includes the velocity of the scattering turbulence.
Using hybrid simulations, it has been recently shown [24] that the downstream turbulence is, in
general, more effective than the upstream one in determining the slope, hence here we will include
only such an effect. In a parametric form, we can write the mean velocity of the waves downstream as
𝑣̄𝐴,2 = 𝜒𝐴

√︁
11/8 𝜂1/2

𝐵
𝑣𝑤 , where 𝑣𝐴 is the Alfvén speed and 𝜒𝐴 = 0 for waves that are symmetrically

moving in all directions. The comporession ratio is than written as

𝜎 =
𝑢1

𝑢2 + 𝑣𝐴,2
=

𝜎

𝑢2 +
√︁

11/8 𝜉𝐵 𝜒𝐴 𝑢1
. (14)

The value of the parameter 𝜒𝐴 obtained from numerical simulations is of the order of few tens
of percent. However, in such simulations the magnetic field amplification is only due to the CR
streaming, while in the case of stellar winds the magnetic field is more probably determined by
MHD instabilities. Hence it is not clear whether the results by [24] can be straightforwardly applied
to our case. As a consequence, we will take 𝜒𝐴 as a free parameters.

Now we do have all the ingredients to evaluate the CR flux produced by SCs. However, one
last caveat need to be addressed. The instantaneous CR luminosity is formally obtained from the
particle flux escaping from the wind bubble, which reads 𝜙esc = 4𝜋𝑅2

𝑏
[𝐷𝜕 𝑓 /𝜕𝑅]𝑅=𝑅𝑏

, and the
total amount of CR injected by a single SC should be given by the integral during its lifetime,∫
𝜙esc𝑑𝑇 . However, one can easy realize that such a contribution is always negligible with respect

to the amount of particles stored inside the bubble, which is approximately given by 4𝜋/3 𝑓𝑠𝑅3
𝑏
.

This apparent inconsistency is given by the fact that the solution provided by [8] is stationary and
does not account for the time evolution of the wind-bubble after the adiabatic phase, when the
bubble will fade out, releasing all CR stored during the acceleration phase. This issue can be solved
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replacing the escaping flux with the flux injected inside the bubble, i.e. 𝜙𝑠 = 4𝜋𝑅2
𝑠 𝑢2 𝑓𝑠. [8] have

shown that 𝜙esc and 𝜙𝑠 differ only slightly at energies ≳ 𝐸max.

5. Results and discussion

Using the approximation provided in Eq.(9) we can write the CR flux at the present time 𝑇

injected by the entire population of SC as follows:

𝑄SC(𝐸,𝑇) ≃ 𝜓̄

∫ 𝑇

0

∫ 𝑀𝑐,max

𝑀𝑐,min

𝑓𝑐 (𝑀𝑐, 𝑡) 𝜙𝑠 (𝑀𝑐, 𝑡) 𝑑𝑡 𝑑𝑀 ×
∫ 𝑅disk

0
𝜌𝑐 (𝑟) 𝑑𝑟 . (15)

In the present work, rather then performing the analytical integral, we proceed generating a synthetic
population of SC and then we sum up over the contribution of all individual clusters. In Figure 2 we
show the CR spectrum injected by the synthetic population shown in Figure 1. Two different cases
are considered: 𝜒𝐴 = 0 and 𝜒𝐴 = 0.1. The CR acceleration efficiency and magnetic amplification
efficiency are fixed to 𝜉cr = 0.05 and 𝜂𝐴 = 0.05. The CR spectrum is shown for three different
assumption of the diffusion coefficient (Bohm, Kraichnan and Kolmogorov) and is compared with
the spectrum of CR injected by SNRs. Notice that all Figures only show the proton CR component.
Heavier elements are not discussed here. One can see that for Bohm diffusion, the 𝐸max reaches
PeV energies, and the SC contribution dominates the CR spectrum above ∼ 100 TeV. The case with
𝜒𝐴 = 0 show a harder spectrum (𝑠 = 2.03) than the one having 𝜒𝐴 = 0.1 (𝑠 = 2.18).

Notice that the contribution from SNRs is estimated using some simplifications. We assume
that all SN explode into an uniform medium with density 0.1 cm−3. The kinetic explosion energy is
fixed to 1051 erg and the ejecta mass to 5 M⊙. The particle acceleration and escape is than calculated
using the model by [26] which include the magnetic field amplification due to streaming instability
(even though in a simplified approach). As one can see from Figure 2, the effective maximum
energy produced by SNRs is only ≃ 50 TeV (similar results are obtained using more refined models
like [27] for the same SNR parameters).

There are two important aspects to discuss. The relative normalization between the SCs and
the SNRe contributions and the different slopes. The normalization of the CR flux produced by
SNRs is obtained taking the Salpeter IMF for the entire Galaxy stellar population and normalizing
it to a SFR of 2 M⊙ yr−1 [28]. Than we assume that all stars with 𝑀 > 8 M⊙ explode as SNe. This
approach gives a rate of ≃ 1 SN every century, a factor roughly 2 smaller (but still compatible within
the errors) than the one estimated from the combined evidence from external galaxies and from
the observation of historical SNe in our Galaxy [29]. Then, we assume that the SNR acceleration
efficiency is the same as the WTS, namely 5%. These assumptions gives the power ratio between
SCs and SNRs equal to 𝑃SC/𝑃SNR ≃ 8%. If one account for the uncertainties of several parameters,
such a value ranges between 1% and 30%. Given the smaller power injected by SCs with respect
to SNRs, the possibility that they are responsible for the CR spectrum at PeV energies strongly
depends on two quantities: the diffusion coefficient in the bubble and the value of the spectral slope.
Concerning the former, only a diffusion close to Bohm-like seems able to produce a maximum
energy substantially larger than the one produced by SNRs. In addition, the spectral slope needs to
be harder than the one produced by SNR, like the case shown in Figure 2(a). If these two conditions
are realized, than SCs could be responsible for the observed CRs at PeV energies. On the other
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Figure 2: CR spectra injected by stellar clusters, compared with the one injected by SNRs (red-dashed lines).
Panels 2(a) and 2(b) show the cases corresponding to 𝜒𝐴 = 0 and 𝜒𝐴 = 0.1, respectively. Different lines are
calculated with different assumptions for the diffusion coefficient in the wind-bubble, as labelled.

hand, steeper diffusion and/or slope similar (or steeper) than the one produced by SNRs would
question the role of SCs, at least in the simplified model presented here.
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