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The recent discovery of gravitational waves and high-energy cosmic neutrinos, marked the be-
ginning of a new era of the multimessenger astronomy. These new messengers, along with
electromagnetic radiation and cosmic rays, give new insights into the most extreme energetic
cosmic events. Among them supernovae explosion is one of the challenging targets of this new
astronomical approach.Gravitational waves, much like neutrinos, are emitted from the innermost
region of the core collapse supernova and thus convey information on the dynamics in the super-
nova core to the observer. They potentially carry information not only on the general degree of
asymmetry in the dynamics of the core collapse supernova, but also more directly on the explosion
mechanism, on the structural and compositional evolution of the protoneutron star, the rotation
rate of the collapsed core, and the nuclear equation of state. The development of a new machine
learning algorithm will be described to further improve the detectability of a gravitational wave
signal from core collapse supernova and the results obtained will be discussed.
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1. Introduction

The advanced generation of gravitational wave detectors has proved their capacity of detecting
gravitational waves (GWs) from astrophysical processes. While gravitational waves have been
detected from mergers of binary black holes and binary neutron stars, core collapse supernovae
(CCSN), have not been detected yet and they still represent a puzzle to solve. We had confirmation of
the basic CCSN theory through the detection of MeV neutrinos from the SN1987A [1]: the collapse
of a massive star’s core is driven by the release of gravitational energy and the vast majority of this
energy is realised in neutrinos. However, the details of the mechanism of the explosion are still
an open question and the astronomical community is trying to disentangle the supernova explosion
mechanism with intense studies.

Massive stars (𝑀 > 8𝑀⊙) spend most of their lives burning hydrogen into helium, which
settles in the core and, when temperatures increase sufficiently, burns into heavier nuclei until iron
is reached. The resulting iron core is supported by electron degeneracy pressure. When the core
reaches the Chandrasekhar mass, pressure cannot support its own weight anymore and collapses.
The collapse of the inner core is stopped abruptly when nuclear saturation density is reached at the
center and the inner core bounces back. Shortly after the core bounce neutrino emission carries
away energy from the post-shock layer. In the present models of the neutrino driven supernovae
explosions, the intense hydrodynamic mass motion has to play a significant role in the energy
transfer by the neutrino flux to the the medium behind the stagnating core-bounce shock, reviving
the outward shock motion and thus initiates the SN explosion. Due to the weak coupling of neutrinos
in the region of this energy deposition, in the hydrodynamic models of the explosions a large variety
of physical ingredients are needed [2, 3]. This so called neutrino driven mechanism [4], is the
dominant theory to explain CCSN explosions in slowly rotating progenitors.

In a supernova explosion, GWs are generated in the inner core of the source, so that this
messenger carries direct information of the inner mechanism. The feasibility of this scenario will
be supported by the joint observation of neutrino and gravitational wave emission from CCSN,
by assessing the correlation between neutrino emission and collapsed core motion. Although the
phenomenon is among of the most energetic in the universe, the amplitude of the gravitational wave
impinging on a detector on the Earth is extremely faint. For a CCSN in the center of the Milky
way, a rare event, we could expect amplitudes of the metric tensor perturbations ranging between
10−21 − 10−23. To increase the detection probability we should increase the volume of the universe
to be explored and this can be achieved both by decreasing the detector noise and using better
performing statistical algorithms.

Multi-dimensional simulations of core-collapse super- novae are currently at the frontier of
research in the field following the two main basic explosion paradigms: the neutrino-driven mecha-
nism, thought to be active for slowly rotating progenitors and responsible for the most common SNe,
and the magneto-rotational mechanism, active only for fast rotating-progenitors and responsible for
rare but highly energetic events, like hypernovae and long GRBs. Several groups worldwide are
currently attacking this problem with two- and three-dimensional simulations using the world’s
most powerful supercomputers. Multiple challenges arise during the numerical modelling: i) ac-
curate solution of the neutrino transport equations during the evolution; ii) incorporation of the
complete in- teractions of electron, muon and tau neutrinos and their anti-particles with matter; iii)
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use of high resolution to re- solve numerically fine structure features in the convective and turbulent
flow around the proto-neutron star; this is of special importance for the development of magneto-
rotational instabilities in fast-rotating progenitors; iv) accurate (general relativistic) description
of gravity; v) use of sophisticated equations of state to describe the behaviour of matter at high
densities. The different groups studying the problem use different approaches to tackle each of
these challenges and, to this point, no one has carried out a definitive three-dimensional simulation
including all the physical ingredients and with sufficiently high resolution to give the world-wide
community confidence in the results. Despite of the problem complexity, these calculations give
acceptable remnant neutron-star masses and predicted already few distinct signatures of GW signals
in both the time and frequency domains. The core-bounce signal is the part of the waveform which
is best understood [5] and it can be directly related to the rotational properties of the core [6, 7].
These information can be used in the search of the GW signal embedded in the detector noise, with
the perspec- tive to increase the confidence detection of signal emitted in the deeper universe.

2. Methodology

In the CCSNe case we can take advantage of the signal peculiarity, in particular that associated
to monotonically raise of the frequency related to the g-mode excitation. The aim is to present a
search strategy of events in coincidence in the advanced detector network [8, 9], characterised by a
raising monotonic behaviour in the time-frequency plane, similar to the one observed in numerical
simulations. Our strategy is based on machine learning techniques. These are tools applied even
to big chunks of data in different contexts, analysed with minimal human supervision and able to
resolve ambiguity and tolerate unpredictability.

To implement our search method, we consider a parametric phenomenological waveform
designed to match the most common features observed in the nu- merical models of CCSN. We
focus our attention on the g-modes excitation, the most common feature of all models developed so
far to describe the CCSN phenomena, responsible for the bulk of the GW signal in the post-bounce
evolution of the proto-neutron star. The convolution neutral network (CNN) in use is a specialized
kind of Deep Learning algorithm to process data that has a known grid-like topology and can learn
to differentiate a variety of input types due to its ability for pattern recognition [10]. In a CNN,
the input is convolved with a filter, which varies according to the characteristics of the data since
it can be learned by the network. The computations are performed at each step, as the filter is
slided onto the input to compute the corresponding value in the output feature map. Despite of the
automatic learning of the filter, some parameters need to be tuned by hand. For the development of
our Mini Inception-Resnet network, including the model definition, the training and the validation
phases, we have used the Keras frameworks, based on the TensorFlow backend. In this work we
implement a binary cross-entropy instead and a sigmoid activation function for the output, i.e. we
address the problem as a classification problem with a positive class (event class) and a negative
class (noise class). Therefore, the output of the network is a probability vector 𝜃, which contains
the probabilities of the template belonging to one class or another. The classification task is then
performed according to a pre-defined threshold 𝜃∗, i.e. the template will be classified as event class
only if this probability overcomes 𝜃∗.
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The Advanced LIGO-Virgo detector network collected data for three runs, during which more
than 90 GW events have been identified [11, 12]. To assess the robustness of our method, we
selected data from the second observing run of the Advanced GW detectors, without relaying on
any neutrino information. In particular, we chose a stretch of real data even containing glitches,
taken during August 2017, when Virgo joined the run [13]. The period includes about 15 days of
coincidence time among the three detectors and we used this data set to generate about 2 years of
time-shifts data to train and test the neural network as noise class. We define the starting time of
each image every 2 s, the images containing the central time of injected signals are considered as
event class, instead the ones without signals are the noise class. The injected signal is expected to
be about 600-700 ms in duration, drawn everywhere in the image, with a small probability to be
between two consecutive images. Such images are used for the training in any case, therefore the
network can recognise also partial signature of the event. The training set for CCSN signals has
been constructed injecting waveforms at fixed distances: 0.2, 0.4, 1, 2 and 3 kpc, for each distance,
of the order of 70000 waveforms, with random sky localization. 75% of the set is used in the actual
training while the remaining 25% is used for validation. In the blind set we injected a new ensemble
of about 260000 simulated signals, generated by the phenomenological templates described before.
The distance is chosen in a uniform distribution between 0.2 and 15 kpc, position in the sky are
randomly chosen. This set is used to quantify the detection efficiency and to test the network. It
is not involved in the training or validation procedure. For the test set we perform injections using
CCSN waveforms from numerical simulations found in the literature considering 3D simulations
of non-rotating progenitors representative of the neutrino driven mechanism. We injected about
65000 waveforms uniformly in distance and sky directions, from 100 pc to 15 kpc.

3. Results

We train the network using curriculum learning, where we start training with the easiest data
sets, and then gradually the task difficulty is increased. During the validation process the the
decision threshold 𝜃∗ = 65% has been chosen. In this section we present the results obtained when
we used the network trained and optimized in the previous section on the data of the blind set and
the test set. The network has not been trained by any of the images of these two sets so they can
be used for the final test of the performance of the network. The signals injected in the blind set
correspond to waveforms generated by the same procedure used to generate the training set, while
the injections in the test set correspond to realistic CCSN waveforms. In Fig. 1 on the left, we report
the histogram of the injections in the real noise. Such plot shows the robustness of the decision
threshold 𝜃∗ = 65% even in the case of real detector noise.

In Fig. 1 on the right we plot the Receiver Operating Characteristic (ROC) curve and we
calculate the area under the curve (AUC). We note the high performance of the test set (AUC=0.79)
compared with that obtained for the blind set (AUC=0.90). Even if we only trained our network
with phenomenological waveforms from the template bank, such waveforms mimic the behaviour
of the test set, which is the main reason behind such good results.
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Figure 1: Left: Histogram of real detector noise and injections in real time as function of the probabilities
predicted by Mini Inception Resnet. The vertical line represents the chosen decision threshold 𝜃∗ = 65%.
Given the counts of the 𝑖th bin 𝑐𝑖 and its width 𝑏𝑖 , we define the probability density as 𝑐𝑖/(

∑𝑁
𝑖 𝑐𝑖 × 𝑏𝑖),

where 𝑁 is the total number of bins of the histogram. Right: True Positive Rate (TPR) as function of the
false positive rate (FPR) in percentage. Performance of our neural network for the blind set and the test set.
AUC is presented in the legend of the plot.

Another interesting graph that shows the resemblance between the blind set and test set is Fig.
2 on the left. Here we plot the efficiency 𝜂𝐶𝑁𝑁 as a function of the distance.

Figure 2: Left: The efficiency 𝜂𝐶𝑁𝑁 as a function of the distance computed during the testing process in
kpc. Right: The efficiency 𝜂𝐶𝑁𝑁 as a function of the network SNR computed during the testing process

As we can see, at short distances there is a difference in efficiency between blind set and test
set of ≈ 10%, but when we increase the distance, they seem to reach a lower limit at 𝜂𝐶𝑁𝑁 ≈ 60%.
In Fig. 2 on the right we also plotted 𝜂𝐶𝑁𝑁 against the network SNR. For low SNR, the difference
in efficiency 𝜂𝐶𝑁𝑁 in the two case, blind set and test set, is around 10%, while for SNR > 15 we
obtain the same efficiency. These final results assess the robustness of this method to detect CCSN
signals embedded in the real detector noise.
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4. Discussion

The search of CCSN signals is carried by a software algorithm whose architecture trains 98997
parameters. We trained the Mini Inception-Resnet using of about 26000 images corresponding to
spectrograms of phenomenological waveforms injected in real noise of the three detector network
LIGO-Virgo during the second observation run, and similar number of images without signals. We
used the curriculum learning with decreasing value of the SNR for the training. At present the
entire data processing is rather fast: the training and validation phase, performed in the real detector
noise, is done in 2 hours and 21 minute using a GPU Nvidia Quadro P5000, while predicting the
test set takes 3 ms for each 2 s long image. Given that we take advantage of the Keras/TensorFlow
framework, widely used within the machine learning community, it should be easy to increase
the complexity of our current CNN or to incorporate the latest developments in machine learning
algorithms, with a reasonable increase of the computational cost of the signal search. We developed
a new machine learning algorithm to further improve the detectability of a GW signal from CCSN.
Regarding the applicability of our method for the GW detection, we have considered a detection
threshold, 𝜃∗ = 65%, that results in a FAR of about 5% at SNR∼ 15 (or a FPR of ∼ 10% at
TPR= 50%). These values could be appropriate for an observation with high confidence of an
event in coincidence with a neutrino signal. In those cases the neutrino signal is expected to be
bounded within 20 s during the initial SNEWS alert [14] and very likely well within 1 s in the
detailed analysis of high sensitivity neutrino detectors such as Super-K [15]. If the method were to
be used in all-sky non-triggered searches, the range of values of FAR needed to make a detection
with high confidence could be achieved by using values of 𝜃 very close to 100%. The efficiency of
the algorithm in this regime is something that could be explored in future work. These results are
very promising for future detections of GWs from CCSN, because the network allows us to observe
more than half of the events within 15 kpc.
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