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DAMPE space-borne cosmic ray experiment has been collecting data since December 2015.
Many high-impact results on the ion, electron and photon fluxes were obtained. This submission
presents the carbon flux analysis with DAMPE using machine learning techniques. The readout
electronics would saturate at energy deposits above several TeV in a single BGO bar of the DAMPE
calorimeter. The total energy loss per event due to saturation can sometimes reach over a hundred
TeV. We present a convolutional neural network model which can accurately recover the energy
lost due to saturation and thus significantly increase the dynamic range of DAMPE. Another
machine learning model combines the resolution of the hodoscopic BGO calorimeter and the
high-resolution tracker of DAMPE to provide the best possible prediction of the direction of the
incoming particle. This allows measuring charges at energies up to several hundred TeV. In this
work, we present the application of these methods to carbon flux analysis.
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1. Introduction

Cosmic rays, high-energy particles originating from various astrophysical sources, hold sig-
nificant importance in astroparticle physics. The DAMPE mission [1, 2], launched in December
2015, aims to explore these particles with exceptional precision and to shed light on fundamental
astrophysical questions of origin, acceleration and propagation of the cosmic rays. Among the
latest DAMPE results are the measurements of the proton [3] and helium [4] spectra, as well as the
electron flux [6], boron-to-carbon flux ratio measurement [5] and many others [7-9]. DAMPE’s
key components include the Plastic Scintillator Detector (PSD) for charge identification [10, 11],
the Silicon Tracker (STK) for precise tracking [12, 13], the BGO Imaging Calorimeter (BGO)
for energy measurements and gamma-ray identification [14, 15], and the Neutron Detector (NUD)
for providing additional electron/hadron discrimination [16]. DAMPE’s exceptional capabilities,
including its fine-segmented thick calorimeter and large acceptance, enable the detection of cosmic
rays with remarkable energy resolution. Specifically, DAMPE achieves an energy resolution of
~1% for electrons and gamma rays, and 30% for protons and ions.

To enhance measurement accuracy, DAMPE incorporates advanced machine learning tech-
niques. A machine learning algorithm is developed to correct saturation effects observed in the
BGO calorimeter [17]. This algorithm accurately identifies and corrects for saturation using data
from the BGO calorimeter, providing more precise energy measurements and improving cosmic
ray flux determination. Additionally, a machine learning-based track reconstruction algorithm
optimizes track measurements in the STK [20]. Leveraging neural networks, this algorithm ana-
lyzes BGO information and STK sensor signals to estimate particle direction with improved spatial
resolution, enhancing charge measurements and event selection for flux determination.

Integration of machine learning not only enhances measurement accuracy but also enables
more efficient data analysis and processing, unlocking the full potential of DAMPE’s data. The
following sections of this paper will delve into the details of these machine learning methods and
their impact on measuring the cosmic ray carbon flux.

2. BGO saturation correction

BGO saturation, which occurs when the energy deposit in a single bar of the BGO calorimeter
exceeds a certain threshold, poses a challenge in accurately measuring the energy deposited by
high-energy cosmic ray particles [17]. In case of an extreme energy deposit in a single bar the
readout electronics cannot record the energy in that specific bar, leading to an underestimation of
the total energy deposited. An example of an event monitor for a saturated event is shown on figure
1. Typically this happens at energy deposited in one bar above about 3 TeV if we consider the
last layer of BGO, where the optical filter transparency are set for the precise measurements of the
shower tail for better electron and gamma identification. In middle layers saturation appears starting
at energies about 3 times larger.

To address this issue, a machine learning approach utilizing Convolutional Neural Networks
(CNNps) trained on helium Monte Carlo (MC) simulations has been employed. The CNN-based
BGO saturation correction consists of two distinct models. The first model aims to predict the energy
lost due to saturation in the last layer of BGO. This model is only applied when the saturation occurs
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Figure 1: An example of saturated event. Views from two orthogonal directions are shown, corresponding
to the coordinate system of DAMPE. The reconstructed direction of the incoming CR is shown with green
lines. The sub-detectors are visible: on top the PSD detector, then STK tracker, BGO and NUD on bottom.
Color shows the strength of the signal in each channel. The saturated bars are situated right on the shower
axis and are shown as zero (white) bars. The off-axis zero bars are not saturated, the signal in them is below
the noise level.
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Figure 2: Architecture of the CNN models used in the saturation correction. The last layer applies linear
activation.

in a single isolated bar in the last layer, meaning that the saturated bar is not adjacent to any other
saturated bars. It is important to separate the last layer saturation to a distinct model, since the
last layer saturation happens at lower energies and usually implies energy loss at about 2-4 TeV,
while the saturation in the middle bars typically corresponds to ~3 times larger energy loss. The
architecture of the model is shown on figure 2. The model takes as an input the so-called combined
view of BGO, where the XZ and YZ view are interlayed. As an additional input we provide the
model with the reconstructed shower inclination on both axes (Theta X and Y on the figure 2). The
model consists of two convolutional and four dense layers with ReLLU activation between them [18].
The second model, with the same architecture, is designed to predict the energy loss per saturated
bar in all other layers of the BGO calorimeter.

To account for the use of helium MC in our training, we take steps to unbias the resulting
correction when applying it to carbon data. The corrected energy deposition contributes to the
regularisation of the unfolding procedure [19], which aims to infer the true energy spectrum
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Figure 3: Two-dimentional distribution of re-

constructed missing energy versus true missing

energy. Diagonal line of reconstructed = true is

shown for reference. Colors correspond to the
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Figure 4: Efficiency of the track reconstruction
and identification derived from helium MC as a
function of the particle kinetic energy: (circles)
the developed CNNs algorithm; (squares) stan-
dard track reconstruction with the ideal identifi-

cation; (triangles) standard track reconstruction
with the standard identification.

of cosmic ray carbon nuclei. Thus, this correction plays a vital role in accurately determining
the carbon flux at the highest energies, where saturation effects are most pronounced. Figure 3
illustrates the performance of the correction on test sample of helium MC. From this figure one can
see that in some cases saturation causes a massive energy loss up to several hundred of TeV, and the
correction is able to recover it with high confidence.

3. Machine learning tracking

The limited precision of absolute charge identification poses a significant challenge in direct
cosmic-ray detection, as it is closely tied to the accuracy of particle trajectory reconstruction. In
addition to the BGO saturation correction, we recently introduced a machine learning technique
for track reconstruction in the Silicon Tracker (STK) [20]. Unlike the standard tracking which in a
nutshell requires the track to pass through the STK hits [21], the ML tracking approach provides a
direction vector based on the full map of STK hits and seeded from the direction provided by the
BGO calorimeter, allowing for more accurate determination of the primary particle’s trajectory. The
seeding BGO direction is estimated with a separate CNN model. The input for STK tracking model
is the Hough images of STK [22] where the selected hits are transformed into the lines, see figure
5. Figure 4 illustrates the superior efficiency of the ML tracking approach compared to standard
track reconstruction methods. The tracking techniques employed in our study are optimized and
trained to accommodate various particles, including carbon, and not solely limited to proton or
helium. While we present the tracking plot as an example for helium, it is important to note that the
techniques extend to other particle species, such as carbon.

Furthermore, the ML tracking provides a valuable parameter known as the vertex variable.
This variable is essentially an output of a classifier model and it takes on values between 0 and
1. A vertex value close to 1 indicates that the primary particle likely reached the first layer of the
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Figure 5: Hough image of a typical Helium event and the architecture of the tracker convolutional neural
network. Big (black) and small (red) circles represent the true and the reconstructed trajectory of a primary
particle, respectively. See details in [20]

STK without undergoing any inelastic interaction. Conversely, a vertex value close to 0 suggests
that a hadronic shower initiated before reaching the STK. By applying a cut on the vertex value,
researchers can select events with clearly defined charge in PSD, so that are well-suited for the
analysis of ion fluxes.

4. Carbon flux measurement

The BGO correction plays a crucial role in enhancing the energy resolution, particularly at
high energies, which is essential for accurately determining the flux. Simultaneously, the ML track-
ing algorithm aids in identifying carbon candidate events with minimal background contribution,
ensuring a high acceptance rate. The synergy between these techniques enables us to measure the
carbon flux with improved precision and reliability.

The present analysis is based on DAMPE data from December 2015 until the end of September
2022. The events are selected by requiring the selection by the high-energy trigger [23]. On top
of it, the particle direction, reconstructed by the BGO detector, have to be well contained withing
the detector volume. Furthermore, the events recorded while DAMPE flies by the South Atlantic
Anomaly are excluded. These are the preselection criteria used in the current analysis.

Subsequently, the vertex variable cut, as discussed in the previous section, is implemented to
exclusively select events with a trustworthy charge measurement. This cut significantly reduces
the contamination of PSD by back-splashing particles, leading to a notable improvement in charge
resolution. To ensure the robust charge measurement we require having at least 2 PSD hits crossed
by the chosen ML track consistent between each other within 4 sigma of the carbon peak in PSD
charge distribution (note that for a given straight track crossing PSD there must be at least 2 hits, 4
at most) — this is the PSD N hits cut. Then the charge for an event is defined as the average over the
PSD hits consistent with the first hit.

The selection of carbon candidate events is achieved by applying a window charge selection
cut on the charge, effectively isolating the desired carbon signal. To estimate the background



DAMPE Carbon Flux with ML Mikhail Stolpovskiy

0.200 < deposited energy < 0.252, [TeV] 2.000 < deposited energy < 2.518, [TeV] 20.000 < deposited energy < 25.179, [TeV]
' ' ' ' 35 v

20000

15000

10000

5000

4 5 6 7 8 9
PSD average charge PSD average charge PSD average charge

Figure 6: Charge distributions in three different bins of deposited energy (see picture titles). Black histogram
shows the flight data events, and colored points show the templates from different ions, obtained with MC
simulations. Carbon window cut is highlighted with two vertical crimson lines.
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Figure 7: Effective acceptance of the carbon can- Figure 8: Fraction of background leaking into the
didate selection. Refer to the accompanying text carbon selection. Total background is shown with
for detailed explanations of the various selection solid red line and doesn’t exceed over few percent.
steps. The acceptance of classic analysis using the The background estimated with the classical anal-
standard STK tracks is shown for comparison [24]. ysis is shown for comparison [24].

contribution from other ions, template fits are employed, allowing for a robust characterization of
the non-carbon ion contributions in the data. Several examples of the charge distributions fitted
with templates obtained from the MC simulations for different ions can be found in figure 6. The
effective acceptance of the carbon selection, calculated on carbon MC, is shown in figure 7. The
background, estimated by the template fits, is shown on figure 8

The dominant source of systematics in our analysis arises from the vertex cut. To estimate it,
we select carbon events based on preselection criteria alone and calculate the efficiency of these
events to pass the vertex cut in both flight data and carbon MC samples. However, the efficiency
measured in flight data is influenced by the contribution of non-carbon background. To mitigate
this bias, we subtract the background, estimated using template fits. We observe a discrepancy
of up to 7% between the efficiency of the vertex cut in MC carbon and what is observed in flight
data, see figure 9. We hypothesize that this significant uncertainty is, at least in part, a result of the
inaccuracies in the hadronic model employed in our MC simulations. Further investigation and a
more comprehensive study of this effect are necessary, see in particular [25, 26].
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5. Conclusions

In conclusion, the utilization of machine

learning (ML) techniques in the DAMPE exper- 12

iment has proven to be instrumental in various g 1; I

aspects of cosmic ray analysis. The ML track- & 09/ -
ing approach enables improved track recon- g 8:?

struction, facilitating the identification of car- @06}

bon candidate events with reduced background & g:z I

contribution and maintaining high acceptance R T e e e

rates. Additionally, the ML models applied for @ 1O0f
BGO saturation correction enhance the energy 0 gt 107 109 107 103 10

resolution, particularly at high energies. The BGO energy [GeV]

successful application of ML techniques high- Figure 9: Top: efficiency of the vertex selection, mea-

lights their significance in advancing our un-  g,.o4 op the flight data (black points) and carbon MC
derstanding of cosmic rays, offering valuable (crimson), as a function of deposited (BGO) energy.
insights into the carbon flux and its implica- Bottom: ratio of efficiencies. The estimated vertex sys-
tions for astrophysics research. tematics is based on the deviation of this ratio from 1.
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