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Chromo (formerly known as IMPY) is a Python frontend that provides a unified interface to
popular generators of hadronic interactions, such as EPOS, DPMJet, QGSJet, Sibyll, and Pythia,
which are used to simulate air showers or minimum bias events at colliders. Chromo is a thin
wrapper on top of these codes, which are written in Fortran or C++, and does not impose a
notable performance penalty. As a Python library, Chromo runs in Jupyter notebooks or Python
scripts and also comes with a command-line mode similar to the program CRMC. Events can
be written to HepMC and ROOT files or exposed as Numpy arrays. These can be inspected and
transformed with Python code, directly accumulated as histograms, and saved to disk even after
modifications. Chromo’s source code is distributed via GitHub and is automatically tested and
built by a continuous integration service. The installation process is extremely simple, since the
software package is distributed as a binary wheel via PyPI for Linux, macOS, and Windows.
Therefore, it can be readily used in education, for new projects, or as a drop-in replacement
for CRMC. Chromo is the central tool for the computing of secondary particle distributions in
the MCEq cascade solver, and has been extensively used for the development and testing of the
DPMJet and Sibyll event generators.
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1. Introduction

Simulations of hadronic, photo-hadronic, and nuclear interactions are indispensable across all
domains of high-energy particle and astroparticle physics. At colliders, they are used to model the
underlying event in analyses which work with nuclear beams or targets, like the LHC or RHIC.
These interactions also transpire in cosmic-ray acceleration sites, during interstellar and intergalactic
transit, andwithin Earth’s atmosphere. They give rise to extensive air showers, detectable via surface
or fluorescence detectors. Interpreting these observations requires air-shower simulations, enabling
the transformation of detector signals into meaningful physical quantities, such as the energy and
mass of the primary particle.

In the air shower application, the unknown initial state and interaction energy often exceeding
the range probed by accelerators. The forward phase space (small-angle scattering), mainly probed
at fixed target colliders with energies below 100GeV, requires extrapolation up to PeV energies based
on phenomenological models, which cannot be directly validated against collider data. Efforts are
currently being made to improve these models at the highest energies using air shower, atmospheric
muon, and accelerator data [1].

General-purpose event generators, like Sibyll [2, 3], DPMJet [4, 5], and Pythia [6, 7],
synergize phenomenological models with quantum-chromodynamical (QCD) calculations. These
tools are designed to simulate authentic event topologies and kinematics while preserving energy,
momentum, and quantum numbers. Developed over decades using diverse fixed target and collider
data, their use is restricted due to the narrow particle production phase space exposure of a single
dataset or accelerator experiment. While Pythia 8 is preferred for high-energy collider simula-
tions, DPMJet is closely integrated with the Fluka cascade code for nuclear interactions. EPOS-LHC
[8] finds extensive usage in collider, air shower, and heavy-ion physics.

Although the codes are validated against available data and tunable to match data within the
experimentally viable energy and phase space range, no code can claim to reproduce all data of
interest satisfactorily. In HEP analyses and in extensive air shower simulations one often employs
various event generators to estimate the theory uncertainty of results. A significant hurdle is the
absence of a unified user interface. Each generator uses varying procedures to define kinematics,
generate events, and to configure the generator. Outputs also differ with varying data structures,
particle identification codes (PIDs), and levels of event information.

TheCosmicRayMonteCarlo (CRMC) package [9] has effectively streamlined user interfaces and
outputs, utilizing a blend of EPOS-LHC subroutines, C++ code, and the HepMC library. However,
CRMC requires a full developer setup, a Unix operating system with compatible compilers, and
bespoke tools for post-processing results. It lacks unit tests to ensure functionality across all target
architectures and operating systems.

In the following sections, we introduce Chromo, our new tool embedded in the Scientific
Python Ecosystem, designed to address most challenges associated with utilizing event generators.

2. Features

Chromo is a unified front-end to general-purpose event generators used in particle and astropar-
ticle physics. It supports DPMJet-III 3.0.6, 19.1, and 19.3; PHOJet 1.12-35, 19.1, and
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Figure 1: Event visualization via HepMC

19.3; EPOS-LHC; Pythia 6.4 and 8.3; QGSJet-01; QGSJet-II-03 and 04 [10]; Sibyll-2.1
and 2.3d; SOPHIA 2.0; and UrQMD 3.4. It allows nonexperts to run various event generators and
to compare their output to measurements or to estimate the current model uncertainty in regard to
certain processes. Like its precursor CRMC, it can be used from the command-line to generate events
in standard formats used in HEP: HepMC3 and ROOT. In addition, it can be used as a library and
called interactively from Jupyter notebooks and other Python code. This allows one to process the
generated event directly without the time-consuming conversion to another format.

A key feature is effort-less installation. The command pip install chromo installs a
precompiled package on Linux, macOS, and Windows, including all required dependencies, which
is immediately ready to use. Chromo makes use of the standard Python packaging architecture
and infrastructure to achieve this. Previously, users had to set up a compilation chain for C++
and Fortran and follow specific build instructions for each event generator. All that complexity is
removed to make state-of-the-art event generators accessible to everyone.

Chromo was carefully designed to incur negligible runtime overhead, so that event generation
with Chromo is effectively as fast as running the bare generator. More about Chromo’s outstanding
performance can be found in Section 4.

Chromo further provides a modern object-oriented interface for event generators with a shallow
learning curve. A generator is started with its default settings, further setup is only required if these
ought to be changed. Related parameters and values are sensibly grouped together and help is
available through Python’s built-in documentation system. Switching generators in Python is as
simple as replacing one class by another. In Jupyter notebooks, generated events are automatically
visualized by using the pyhepmc library [11]. An example is shown in Fig. 1.

3. Workflow

As an example Chromo workflow, we consinder to generate 1000 inelastic proton-oxygen
collisions at 1 TeV in the center-of-mass frame. The parameters of a collision are encapsulated by
the CenterOfMass, a subclass of the more general EventKinematics class. Here, we set collision
parameters as kinematics = CenterOfMass(1*TeV, "p", "O"). Nuclei can be set as a tuple
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Figure 2: Pseudorapidity distribution of pions
in proton-oxygen collisions at

√
B = 5 TeV for

various hadronic interaction models.
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Figure 3: Energy dependence of average multi-
plicity per event in proton-proton interactions for
various hadronic interaction models.

(A, Z), with A as atomic mass and Z as charge, or by using the CompositeTarget class for
multi-nuclei targets.

These parameters are passed to an event generator to simulate the interaction. Chromo sup-
ports multiple models which can be selected from the models module. An instance of the event
generator is created by passing the kinematics object to a specific model’s constructor, such as
event_generator = EposLHC(kinematics). An optional seed for the random number gener-
ator can be set with the seed keyword for reproducible events.

All models have similar methods, being subclasses of the abstract MCRun class. Attributes and
methods of the MCRun class configure the event generator, such as kinematics and random_state
properties to set and receive current EventKinematics object and seed. The set_stable and
set_unstable methods specify where an unstable particle should be decayed by the generator or
become part of the final state. The cross_section method returns a CrossSectionData object
with cross section information.

Finally, 1000 events are generated with for event in event_generator(1000). Each
iteration returns an MCEvent object with collision results, which can be further processed. Fig. 2
and Fig. 3 demonstrate howChromo enables effortless comparisons of common quantities of interest
across multiple event generators.

4. Performance

Chromo was designed to generate events as fast as possible without incurring noticeable
overhead compared to running the bare event generators. This is achievable even though most of the
library is written Python, an interpreted language which runs a factor 100 to 1000 slower than fast
compiled languages like Fortran or C++. The runtime required per generated event is limited from
below by the runtime of the Fortran code in the wrapped event generator. We designed the Python
code to add negligible overhead by avoiding hot loops in Python and minimizing unnecessary work
such as copying memory between buffers.

To demonstrate the excellent performance of Chromo, we compare the event generation rate of
proton-proton collisions at different center-of-mass energies to CRMC, which is written in C++, in
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Figure 4: Event generation rate by the programs CRMC and Chromo for three event generators for proton-
proton collisions as a function of the center-of-mass energy. Shown on the left-hand side are event rates,
shown on the right-hand side are the rate ratios. The benchmark was run on an Intel 2.8 GHz Quad-Core i7.

Fig. 4. We use the models EPOS-LHC, QGSJet-II.04, and Sibyll-2.3d. The events were generated
using the respective command-line interfaces and output was produced in the HepMC format.

In all tested cases, the event generation rate of Chromo is comparable to CRMC or much
better (up to a factor 7). The gains scale with the overall event generation rate, which is largest for
Sibyll-2.3d. No significant gains are observed for EPOS-LHC, whereas QGSJet-II.04 is running
about twice as fast in Chromo. The gains are likely related to overheads in copying memory which
Chromo avoids where possible. We probably see no gains for EPOS-LHC, because CRMC is based
on EPOS-LHC code so that running EPOS-LHC is already optimized in CRMC.

Our comparison shows that one can obtain high performance with a software written in a slow
interpreted language like Python, that is on par or even surpassing a fast compiled language like
C++, if bottlenecks are identified and carefully avoided.

5. Program structure

Chromo is composed of multiple layers. It includes the original Fortran/C++ code for event
generators, a custom Fortran/C++ layer for integration with Chromo, F2PY/Pybind instructions
for building Python C/API extension modules, and a top layer of Python code that implements the
library. The code primarily follows an object-oriented approach, with some functional-style code
employed for internal auxiliary tasks. Inheritance is widely used to avoid code repetition and impose
a common interface on similar classes. As a result, many classes form hierarchical structures based
on inheritance. The core functionality is implemented by following distinct inheritance hierarchies.

The hierarchy handling interaction parameters is centered around EventKinematics class.
It starts from EventKinematicsBase data class that stores details about the initial state of a
collision, such as the particles involved, their energy or momenta, and the frame of reference. It
also manages frame transformations. The EventKinematics subclass extends the data class with
a flexible interface for specifying the initial state and frame. The subclasses CenterOfMass and
FixedTarget provide simplified versions of general interface for common special cases.
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MCRun is an abstract base class that represents an event generator. Its abstract methods need to
be implemented by concrete subclasses, which ensures that each generator adheres to the common
interface. The constructor accepts an EventKinematicsBase object and a seed for the random
number generator. Methods and properties allow access and modification of event kinematics, the
state of random number generator, and to specify which unstable particles should be decayed by
the event generator. For a given initial state, the event generator can return a CrossSectionData
object that contains cross section information. Event generation follows the conventional generator
protocol in Python, where events are generated within a for-loop for a specified number of iterations.

EventData is a data class that mainly stores information about the internal history and final
state of the collision, such as the particles produced with their particle ID, momentum, energy,
mass, production vertex, parents, and children. Each of these quantities is represented collectively
by a NumPy array with entries corresponding to specific particles. The class has methods and
properties that return useful derived quantities such as transverse momentum, rapidity, pseudora-
pidity, and Feynman G. Also, it provides basic functionality for making deep copies and particle
filtering. MCEvent derives from EventData and provides a common infrastructure for the creation
of EventData instances by a specific event generator. The specific implementations are provided
by subclasses of MCEvent. Wherever possible, these implementations create NumPy arrays as
views into the memory in Fortran common blocks or C++ vectors to reduce unnecessary copies.

The serialization of events into file formats common in particle physics is carried out by
writer classes Root and HepMC. An Svg writer saves a graph of each event in the SVG image
format. It is useful for illustration and debugging purposes. These classes are designed as Python
context managers, which allows them to perform automatic cleanup actions when the writing task
is complete. The writer object has a single public method write, which accepts an EventData
object and converts it into the appropriate internal representation. Some writers implement internal
buffering to improve the writing speed by minimising the number of disk accesses.

Chromo provides a command line interface (CLI) that mimics the CRMC interface to ease the
transition for former CRMC users. The CLI allows one to generate events for various initial states
and save the formats previously described. The CLI was designed to give a good user experience
by providing comprehensive help output and a flexible system to select models via a string. Model
names do not need to be spelled out completely if the already provided string is not ambiguous. In
case of ambiguity, a list of matching models is printed. The CLI also prints informative summaries
on the initial state and configuration, as well as a progress bar with the current status of a task, the
estimated remaining run time, and the current generation rate in events per second.

To conclude, a brief tour of the modules in Chromo is provided. kinematics contains classes
that describe the initial state of the collision and handles transformations between different frames
of reference. common contains the abstract base classes that define the unified interfaces to the
generator and its output, MCRun, EventData, and MCEvent. models contains model-specific
classes derived from MCRun and MCEvent which implement the specific translation code between
the respective model and the unified interface. writer includes classes for saving events in the
HepMC, Root, and Svg file formats. cli contains functions that implement the command-line
interface (CLI). constants collects physical constants, unit conversion factors, and global default
parameters. util contains various helper functions and classes used internally by other classes.
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6. Automated validation and distribution

In order to save end-users from the time-consuming and potentially cumbersome build process,
Chromo is distributed as Pythonwheels through PyPI for a variety of platforms and Python versions.
At present, Chromowheels are available forWindows 64-bit, Linux 64-bit, macOS Intel, andmacOS
Apple Silicon platforms, and Python versions 3.8, 3.9, 3.10, and 3.11. A wheel consists of about
20 pre-compiled extension modules. The compilation and wheel construction is automated using
CMake, which is integrated with the setuptools packaging system. A wheel needs to be compiled
for each combination of platform and Python version. It is essential to test and validate each wheel
prior to distribution. The Chromo project employs established CI/CD principles and uses unit tests,
GitHub Actions, and the cibuildwheels package to build, test, and deploy the software.

Any code changes committed to the GitHub repository initiate the pre-commit.ci code style
validation and the test workflow. The latter compiles, builds, and installs Chromo on Windows,
Ubuntu, and macOS. The installed package is extensively tested using a set of 790 unit tests,
managed by the pytest framework. Each module of Chromo is scrutinized, with a substantial
number of tests (approximately 580) dedicated to evaluating the results of event generators across
various permutations of projectiles, targets, and reference frames. The Monte Carlo methods of the
event generators are naturally sensitive to small changes in floating point calculations that stem from
differences between mathematical libraries, such as glibc, among the different operating systems.
It is therefore not possible to perform bitwise comparisons among the different platforms. Instead,
we test the correctness of the output by performing probabilistic comparisons of event distributions
with respect to pre-generated reference values.

The release workflow builds wheels for all combinations of platforms and Python versions,
which are automatically tested and uploaded to PyPI if all tests pass. This task is largely automated
by the cibuildwheel tool, which performs the required steps to create system-agnostic wheels.

7. Summary and future development

In this paper, we introduced Chromo, a Python frontend that provides a unified interface to
popular generators of hadronic interactions. Event generators such as EPOS, DPMJet, QGSJet,
Sibyll, and Pythia, which are integral for simulating air showers or minimum bias events at colliders,
can be managed efficiently using Chromo. As a thin wrapper over these codes, Chromo ensures no
significant performance penalty is imposed.

The ease of installation and integration with Python’s interactive environment are some of
Chromo’s distinguishing features. It is designed to be user-friendly, minimizing the necessity of
dealing with unique procedures to define kinematics, generate events, and parse outputs associated
with each event generator.

Chromo comes with event visualization capabilities, support for multiple event generators, and
efficient memory usage. It offers an intuitive object-oriented interface, thus making it a valuable
tool for both experts and beginners. In addition, Chromo utilizes the Python packaging architecture
and infrastructure, making it easy to install on various operating systems including Linux, macOS,
and Windows.
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The tool has been extensively used by the authors for the development and testing of the DPMJet
and Sibyll event generators, for event simulation at the LHCb experiment. Non-expert users have
used the code successfully for various HEP and astroparticle-related studies. It is the central tool
for the computing of secondary particle distributions in the MCEq cascade solver. Going forward,
Chromo aims to continue addressing challenges associated with event generators and contribute to
the broader realm of particle and astroparticle physics.
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