The Fitting Procedure for Longitudinal Shower Profiles Observed with the Fluorescence Detector of the Pierre Auger Observatory

José Bellidoa,∗ on behalf of the Pierre Auger Collaborationb

aThe University of Adelaide, North Terrace, South Australia, Australia
bObservatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

E-mail: spokespersons@auger.org

The Pierre Auger Observatory uses fluorescence telescopes in conjunction with ground level particle detectors to measure high-energy cosmic rays and reconstruct, with greater precision, their arrival direction, their energy and the depth of shower maximum. The depth of shower maximum is important to infer cosmic ray mass composition. The fluorescence detector is capable of directly measuring the longitudinal shower development, which is used to reconstruct the cosmic ray energy and the atmospheric depth of shower maximum. However, given the limited field of view of the fluorescence detector, the shower profile is not always fully contained within the detector observation volume. Therefore, considerations need to be taken in order to reconstruct some events. In this contribution we will describe the method that the Pierre Auger Collaboration uses to reconstruct the longitudinal profiles of showers and present the details of its performance, namely its resolution and systematic uncertainties.
1. Introduction

At lower energies Auger showers land close to a fluorescence detector and only a small fraction of their profile ends up within the field of view. In these cases the estimation of the calorimetric energy (the integral of the energy deposit) requires a significant extrapolation of the fit function beyond the range of the measurements. HEAT is a set of three fluorescence telescopes installed next to the Coihueco fluorescence detectors (FD) site. HEAT telescopes have a field of view (FoV) ranging from 30$^\circ$ to 60$^\circ$ in elevation, while the Coihueco FoV ranges from 1.6$^\circ$ up to 30$^\circ$. The HeCo system (HEAT and Coihueco telescope) helps to extend the FoV, but for lower energies the HeCo FoV is still not large enough. Therefore, “long” track lengths are not common at low energies, and we are forced to introduce constrains to fit shower development profiles in order to reduce the X_{max} and energy reconstruction biases.

2. The Gaisser-Hillas function

The Gaisser-Hillas (GH) function is used to fit the shower development profile. Originally, the GH function was expressed in terms of (X_0, λ) [1]:

$$f_{\text{GH}}^{X_0, \lambda}(X) = \frac{(dE/dX)_{\text{max}}}{\lambda} \left(\frac{X - X_0}{X_{\text{max}} - X_0} \right)^{\frac{X_{\text{max}} - X_0}{\lambda}} \exp \left(\frac{X_{\text{max}} - X}{\lambda} \right),$$ \hspace{1cm} (1)

which has four parameters: the maximum energy deposit, $(dE/dX)_{\text{max}}$, the depth at which this maximum is reached, X_{max}, and shape parameters X_0 and λ. A mathematically equivalent representation of the GH function can be written in terms of parameters R and L [2]:

$$f_{\text{GH}}^{R,L}(X) = \frac{(dE/dX)_{\text{max}}}{L} \left(1 + \frac{R(X - X_{\text{max}})}{L} \right)^{-2} \exp \left(\frac{-(X - X_{\text{max}})}{RL} \right),$$ \hspace{1cm} (2)

where

$$R = \sqrt{\lambda/|X'_0|}, \quad L = \sqrt{|X'_0|\lambda} \quad \text{and} \quad X'_0 = X_0 - X_{\text{max}}. \hspace{1cm} (3)$$

The properties of the coefficients (X_0, λ) and (R, L) are different. Below we explore these differences and will show that it is more convenient to use the $f_{\text{GH}}^{R,L}$ to fit the shower profile, applying constraints to the coefficients (R, L).

2.1 Properties of the coefficients (X_0, λ) and (R, L)

![Figure 1: Shape of the GH function when changing only X_0, λ, R and L respectively. The units for dE/dX is [PeV/(g/cm2)].](image-url)
The Fitting Procedure for Longitudinal Shower Profiles

José Bellido

Figure 1 shows how the shape of the GH function changes when varying \((X_0, \lambda)\) or \((R, L)\). The width of the shower profile increases for smaller values of \(X_0\), but also for larger values of \(\lambda\). This gives rise to a strong correlation between \(X_0\) and \(\lambda\). Figure 2 shows shower profile fit correlations using the GH functions \(f_{GH}^{X_0}\) and \(f_{GH}^{R,L}\). When performing unconstrained shower profile fits, we only considered profiles longer than 600 g/cm² and with \(X_{\text{max}}\) within the FoV. The observed correlation between \(R\) and \(L\) is negligible compared to the correlation between \(X_0\) and \(\lambda\).

\[\text{Figure 2: Correlation between reconstructed } X_0 \text{ and } \lambda \text{ (left) and between reconstructed } R \text{ and } L \text{ (middle). Change in calorimetric energy as a function of changing } L \text{ or } R \text{ (right).} \]

The right panel in Figure 2 shows the variation of the GH function integral (i.e. the calorimetric energy) over reasonable ranges of \(R\) and \(L\). \(E_{\text{cal}}\) is directly proportional to \(L\) \([2]\). The impact of changing \(R\) over a reasonable range is negligible, less than 0.3%.

2.2 Correlation of the coefficients \((X_0, \lambda)\) or \((R, L)\) with Energy and with \(X_{\text{max}}\)

\[\text{Figure 3: Unconstrained fit results of real data: mean values for } X_0, \lambda, L \text{ and } R \text{ as a function of energy. The solid lines correspond to linear fits. The dashed lines correspond to the central values of the constraints used in a constrained shower profile fit.} \]

\[\text{Figure 4: Unconstrained fit results of CONEX shower (Sibyll2.3d, } E = 10^{19} \text{ eV) profiles for iron (blue), protons (red) and gamma-rays (green). Correlation between reconstructed } X_0, \lambda, L \text{ and } R \text{ with } X_{\text{max}}. \]

Figures 3 and 4 show the correlation of the Gaisser-Hillas coefficients with energy and \(X_{\text{max}}\) respectively. There is a physical correlation of the GH coefficients with energy and \(X_{\text{max}}\). For Figure 4, CONEX simulated showers were used. Physical correlations should be considered when
performing constrained shower profile fits. The correlations of \(X_0\) and \(\lambda\) with energy or \(X_{\text{max}}\) are complicated to quantify, given the strong correlation between \(X_0\) and \(\lambda\). On the other hand, the correlations of \(L\) are easy to consider and \(R\) variations represent negligible changes in the shape of the shower profile.

3. Definition of the constraints in the fit of the shower profile

Constraints on the shape parameters were first implemented in the \(\chi^2\) minimization of the Auger longitudinal profile [3] and are currently part of the profile likelihood fit as

\[
L = L_{\text{GH}} G(p_1; \langle p_1 \rangle, \sigma_{p_1}) G(p_2; \langle p_2 \rangle, \sigma_{p_2}),
\]

where \(L_{\text{GH}}\) is the likelihood for the fit of the energy deposit (Poissonian distribution in the number of photoelectrons) and \(G(p_i; \langle p_i \rangle, \sigma_{p_i})\) are Gaussian distributions for the shape parameters with variance \(\sigma_{p_i}^2\) and centred at the mean values \(\langle p_i \rangle\). The shape parameters \((p_1, p_2)\) can be \((X_0, \lambda)\) or \((L, R)\) depending on whether we use \(f_{\text{GH}}^{L,X_0}\) or \(f_{\text{GH}}^{R,L}\) to fit the shower profile.

The methods to derive \(\langle p_i \rangle\) and \(\sigma_{p_i}\) are of crucial importance to avoid biases in the shape of the profile. These can introduce biases in the calorimetric energy \(E_{\text{cal}}\) and \(X_{\text{max}}\). For that reason, the analysis attempts to derive \(\langle p_i \rangle\) from a study of real data. The values of \(\sigma_{p_i}\) are chosen so that they are large enough to avoid biases, but not too large in order to have an efficient constraint for showers with short track lengths.

3.1 Constraints to the \(f_{\text{GH}}^{L,X_0}\) function in the shower profile fit

Initially the \(f_{\text{GH}}^{L,X_0}\) function was used to fit the shower profiles. For the reconstruction of the data up to ICRC 2015 only \(X_0\) and \(\lambda\) were constrained (this includes data for the energy scale update presented at ICRC 2013 [4] and for the \(X_{\text{max}}\) publication [5]), but for the data presented at the ICRC 2017, a constraint to the width of the shower profile was also included in the fit [6].

3.1.1 Constraints to \(X_0\) and \(\lambda\)

The constraints for \(X_0\) and \(\lambda\) were estimated from data. There, \(X_0\) and \(\lambda\) were determined iteratively, where either \(X_0\) or \(\lambda\) were fixed to the value obtained in the previous iteration. The problem with this procedure is that the values obtained depend very much on the starting parameter. Once e.g. an initial \(X_0\) is picked, one recovers immediately the corresponding \(\lambda\) parameter and vice versa (as suggested by the left panel in Figure 2). Therefore, one of the central values is arbitrary (either \(X_0\) or \(\lambda\)), which depends on the arbitrary choice of the starting parameter. The average values and variances for the mean and standard deviation of the \(X_0\) and \(\lambda\) distributions are:

\[
\langle X_0 \rangle = -120.5 \text{ g/cm}^2 \quad \sigma_{X_0} = 171.7 \text{ g/cm}^2
\]

\[
\langle \lambda \rangle = 60.93 \text{ g/cm}^2 \quad \sigma_{\lambda} = 12.93 \text{ g/cm}^2
\]

They are used in the likelihood of the profile fit defined according to Eq. 4, using two independent Gaussian distributions,

\[
L = L_{\text{GH}} G(X_0; \langle X_0 \rangle, \sigma_{X_0}) G(\lambda; \langle \lambda \rangle, \sigma_{\lambda})
\]
3.1.2 Adding a constraint to the shower profile width

After the update of the energy scale presented at ICRC 2013, it was realized that the energy estimation for low energy events was affected by a rather large negative bias. In 2015 evidence was found in the data for “non-physical” values of the ratio of the calorimetric energy (the integral of the shower profile) and \((dE/dX)_{\text{max}}\) (the amplitude of the shower profile) for lower energy showers (Fig. 5, left). This ratio was called \(k\), and is approximately universal among different primaries and hadronic interaction models as shown in Figure 5 (right). The value of \(k\) is a measure of the width of the shower profile in units of g/cm\(^2\),

\[
k = \frac{E_{\text{cal}}}{(dE/dX)_{\text{max}}}. \tag{8}
\]

From simulations, the mean value of the expected \(k\) distribution changes from around 560 to 635 g/cm\(^2\) over the energy range from \(10^{17}\) to \(10^{20}\) eV (black solid line in Figure 5). The plot on the left in Figure 5 corresponds to the reconstructed average \(k\) values using real events (HeCo and FD events). The small \(k\) values reconstructed at lower energies are biased. The most straightforward solution to remove such a bias was to add a further Gaussian constraint on \(k\) in the fit of the shower profile,

\[
L = L_{\text{GH}} \ G(X_0; \langle X_0 \rangle, \sigma_{X_0}) \ G(\lambda; \langle \lambda \rangle, \sigma_{\lambda}) \ G(k; \langle k(E_{\text{cal}}) \rangle, \sigma_k) \tag{9}
\]

where the mean value of \(k\) is a function of the calorimetric energy.

Figure 5: (left) Reconstructed mean \(k\) values in real data. The solid line correspond to the average \(k\) over all compositions and models (see plot on the right). (right) Predicted mean of the \(k\) distribution as a function of energy, for different compositions and hadronic models. The overall average \(\langle k_{\text{had}} \rangle\) and the corresponding range for \(\sigma(k_{\text{had}})\) are indicated with black solid and dashed lines respectively.

The optimal values of \(\langle k \rangle\) and \(\sigma_k\) had to be derived from simulations. The parameterization of \(\langle k \rangle\) was obtained from the average of the QGSJetII–04, EPOS–LHC, and Sibyll2.3 predictions with a mixed proton and iron composition shown in Figure 5 (right). The value of \(\sigma_k\) was set in order to account for the different models, mass compositions and the shower-to-shower fluctuations. The parameterizations are [6]:

\[
\langle k(E_{\text{cal}}) \rangle = (332.6 + 13.67 \ \log_{10} E_{\text{cal}}) \ \text{g/cm}^2 \quad \sigma_k = 29 \ \text{g/cm}^2 \tag{10}
\]
3.2 Constraints to the $f_{GH}^{R,L}$ function in the shower profile fit

The $f_{GH}^{R,L}$ function was used in the shower profile fit for the ICRC 2019 data production and for this conference it was improved by refining the probability density function for the L parameter.

3.2.1 Constraints that assume a Gaussian distribution for the L and R parameters

The shower profile fit using the $f_{GH}^{R,L}$ function was introduced after the publication, in 2019, of the paper on the measurement of the average shape of longitudinal profiles [7]. It was consequently used for the ICRC 2019 and ICRC 2021 data production and for the papers on the energy spectrum obtained with the 1500 m [8, 9] and 750 m [10] arrays.

The fit with the $f_{GH}^{R,L}$ function has several advantages. The parameter L is to a very good approximation equivalent to k since $L \approx k/\sqrt{2\pi}$, and therefore a fit very similar to that defined by Eq. 9 can be performed using only two constraints:

$$
\mathcal{L} = \mathcal{L}_{GH} G(L; \langle L \rangle, \sigma_L) G(R; \langle R \rangle, \sigma_R)
$$

(11)

Moreover, the average values of the shape parameters can be fixed using the measurements presented in [7], therefore improving the old approach where $\langle k \rangle$ was fixed using MC simulations.

The σ of the constraints were defined following the same logic used for σ_k. The one for L has been derived from that used for k ($\sigma_L = \sigma_k/\sqrt{2\pi}$), while for R we have done a dedicated study using MC simulations. The final parameterizations are:

$$
\langle L \rangle = \left[227.3 + 7.44 \left(\log_{10} E_{\text{cal}} - 18 \right) \right] \text{g/cm}^2 \quad \sigma_L = 11.5 \text{g/cm}^2
$$

(12)

$$
\langle R \rangle = 0.257 \quad \sigma_R = 0.055
$$

(13)

The systematic uncertainties in the measurements of $\langle L \rangle$ and $\langle R \rangle$ are 7.3 g/cm² and 0.040 respectively, well below the σ of the constraints.

3.2.2 Constraints that assume an exponentially modified Gaussian distribution for the L parameter

From shower simulations we noticed that the R distributions are rather symmetric and the width of the constraint looks large enough to encompass the shower-to-shower fluctuations. However, the situation for the L parameter is more complicated: while the distribution for iron showers is rather narrow and symmetric, the one for protons has a long tail toward large values of L and the constraint is clearly not large enough to encompass all the values of L. We noticed that a small bias in X_{max} was introduced for deep showers when the asymmetric distribution of L was not taken into account.

The L distributions for proton showers for different ranges of X_{max} are well described by an exponentially modified Gaussian, i.e. the convolution of the normal and exponential probability density functions,

$$
G_{\text{exp}} = e^{-x/\tau_L} \otimes \frac{1}{\sigma_L \sqrt{2\pi}} e^{-((x-\mu)^2)/2\sigma_L^2} = \frac{1}{2\tau_L} \exp \left(\frac{1}{\tau_L} \left(-x + \mu + \frac{\sigma_L^2}{2\tau_L} \right) \right) \text{erfc} \left(\frac{-x + \mu + \sigma_L^2/\tau_L}{\sqrt{2}\sigma_L} \right)
$$

(14)

where τ_L characterizes the exponential decay and erfc is the complementary error function.
For proton showers the value for τ_L/σ_L increases linearly with X_{max}, regardless of the shower energy. For shallow X_{max} ($X_{\text{max}}=700\text{ g/cm}^2$) $\tau_L/\sigma_L = 1$, and for deep showers ($X_{\text{max}}=1000\text{ g/cm}^2$) $\tau_L/\sigma_L = 3$. For iron showers all the L distributions are well described by a normal p.d.f. with $\tau_L/\sigma_L \approx 0.6$.

The study of the L distributions has led to a new definition of the likelihood for the fit with the $f_{\text{GH}}^{R,L}$ function. In this new version, the R constraint is the same as the one defined in Section 3.2.1 and the one for L is given by an exponentially modified Gaussian p.d.f.:

$$L = L_{\text{GH}} G_{\text{exp}}(L; \langle L_M \rangle, \sigma_L, \tau_L/\sigma_L) \ G(R; \langle R \rangle, \sigma_R)$$ (15)

G_{exp} is characterized by three parameters: L_M is the Mode (value of L for which the p.d.f. has its maximum) and its mean value is parametrized as a function of E_{cal} with Equation 12 using the measurements of the average shape of the longitudinal profiles [7] (justified by the fact that in the bulk of the data there are not so many deep showers), $\sigma_L = 11.5\text{ g/cm}^2$ (the same of the Gaussian constraint, see Equation 12) and τ_L/σ_L is conservatively fixed to the maximum value observed in simulated events, $\tau_L/\sigma_L = 3$ (corresponding to $\tau_L = 34.5\text{ g/cm}^2$). The resulting p.d.f. for the L constraint, in comparison to the Gaussian constraint, is now large enough to encompass the shower-to-shower fluctuations even for the very deep showers.

4. Performance of the constrained fit of the shower profile

Figure 6 show the biases in reconstructed X_{max} and energy as a function of X_{max} for three different types of fit constraints. Panels on the left show the biases calculated using simulated events at energies between $10^{17.8}\text{ eV}$ and $10^{18.5}\text{ eV}$. Panels on the right show relative reconstruction differences in real events for energies between $10^{18.5}\text{ eV}$ and $10^{19.0}\text{ eV}$. The biases for $f_{\text{GH}}^{R,L}G$ and $f_{\text{GH}}^{R,L}G_{\text{exp}}$ fits are rather small (left plots), with a slightly better performance for the $f_{\text{GH}}^{R,L}G_{\text{exp}}$ fit.

In contrast, the f_{GH}^{L,X_0} fit shows a rather large positive bias in E_{cal} for deep showers. This bias looks correlated with the positive bias also observed for X_{max}. This is not surprising because, f_{GH}^{L,X_0} fit tends to overestimate the profile width L when the showers are deep. Larger profile widths clearly correspond to larger values of E_{cal}, and when the profile size is increased the fit tends to introduce a positive bias in X_{max}. The relative differences observed using real events take as reference the $f_{\text{GH}}^{R,L}G$ fit, and they are for intermediate energies, between $10^{18.5}\text{ eV}$ and 10^{19} eV.

The relative difference between $f_{\text{GH}}^{R,L}G_{\text{exp}}$ and $f_{\text{GH}}^{R,L}G$ fits show a moderate X_{max} dependence. In the most extreme case for $X_{\text{max}} \approx 1000\text{ g/cm}^2$, the difference maximize at about 6 g/cm2 for X_{max} and 3% for energy. The f_{GH}^{L,X_0} fit gives shifts consistent with those of the $f_{\text{GH}}^{R,L}G_{\text{exp}}$ fit, within 2 g/cm2 and 1%, with the exception of the few events with $X_{\text{max}} \approx 1000\text{ g/cm}^2$.

For higher energies, above 10^{19} eV, the shifts are very small which means that the performance of the three fits are very similar. This is to some extent expected, as at the highest energies the statistical fluctuations of the measured dE/dX are small and the profiles are in general well contained in the field of view of the telescopes.

5. Conclusion

In some cases the estimation of the calorimetric energy requires a significant extrapolation of the fit function beyond the range of the measurements. The constraints in the parameters that
Figure 6: (left) X_{max} and E_{cal} biases of the profile fit for the HECO events simulated with Sibyll 2.3d (simulations include a realistic energy spectrum and real atmosphere characteristics). The events were selected using appropriate FoV cuts. (right) X_{max} and energy relative difference observed with real data for the f_{GH}^R/f_{GH} fits taking as a reference the f_{GH} fit. Notice that plots on the left and on the right correspond to different energy ranges.

characterize the shape of the shower profile allow us to take control of the extrapolation. This is particularly important at low energies where the showers are characterized by relatively short track lengths. We have carefully examined the impact on the energy reconstruction of various types of constrained fit. The improvement in the energy resolution and the better control of systematic uncertainties is remarkable when the shower width “L” is constrained in the fit of f_{GH}^R to the measured profiles.

References

The Pierre Auger Collaboration

F. Sarazin85, R. Sarto11, P. Savina91, C.M. Schäfer41, V. Scherini56,48, H. Schieler41, M. Schimassek34, M. Schimp38, F. Schlüter41, D. Schmidt39, O. Scholten1,5,1, H. Schorlemmer80,81, P. Schovánek32, F.G. Schröder40,41, J. Schulte42, T. Schulz41, S.J. Sciuotto5, M. Scornavacca7,41, A. Segreto53,47, S. Sehgal18, S.U. Shivashankara76, G. Sigl43, G. Silli1, O. Sima73,6, F. Simon49, R. Smáu73, R. Šmída69, P. Sommer6, J.F. Soriano60, R. Squartini10, M. Stadelmaier52, D. Stanca73, S. Stanič76, J. Stasielak70, P. Stassi36, S. Stráhzn39, M. Straub42, M. Suárez-Durán14, T. Suomijärvi37, A.D. Supanitsky7, Z. Svozilikova32, Z. Szadkowski71, A. Tapia29, C. Taricco63,52, C. Timmermann81,80, O. Tkachenko41, P. Tobiska32, C.J. Todero Peixoto18, B. Tome72, Z. Torrès36, A. Travaini10, P. Travníček32, C. Trimarelli57,46, M. Tueros5, M. Unger41, L. Vaclavek53, M. Vacula33, J.F. Valdés Galicia68, L. Valore60,50, E. Varela64, A. Vásquez-Ramírez30, D. Veberič41, C. Ventura27, I.D. Vergara Quispe3, V. Verzi51, J. Vicha32, J. Vink33, J. Vlastimil32, S. Vorobiov76, C. Watanabe26, A.A. Watson6, A. Weindl41, L. Wiencke65, H. Wilczyński70, D. Wittkowski38, B. Wundheiler7, B. Yue18, A. Yushkov32, O. Zapparrata14, E. Zas79, D. Zavrtanik76,77, M. Zavrtanik77,76.
The Fitting Procedure for Longitudinal Shower Profiles

José Bellido

31 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
32 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
33 Palacky University, Olomouc, Czech Republic
34 CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France
35 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université de Paris, CNRS-IN2P3, Paris, France
36 Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France
37 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
38 Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany
39 Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany
40 Karlsruhe Institute of Technology (KIT), Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
41 Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany
42 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
43 Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany
44 Universität Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany
45 Gran Sasso Science Institute, L’Aquila, Italy
46 INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
47 INFN, Sezione di Catania, Catania, Italy
48 INFN, Sezione di Lecce, Lecce, Italy
49 INFN, Sezione di Milano, Milano, Italy
50 INFN, Sezione di Napoli, Napoli, Italy
51 INFN, Sezione di Roma “Tor Vergata”, Roma, Italy
52 INFN, Sezione di Torino, Torino, Italy
53 Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
54 Osservatorio Astrofisico di Torino (INAF), Torino, Italy
55 Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Milano, Italy
56 Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy
57 Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy
58 Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy
59 Università di Milano, Dipartimento di Fisica, Milano, Italy
60 Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
61 Università di Palermo, Dipartimento di Fisica e Chimica “E. Segre”, Palermo, Italy
62 Università di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy
63 Università Torino, Dipartimento di Fisica, Torino, Italy
64 Benemérita Universidad Autónoma de Puebla, Puebla, México
65 Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPITTA-IPN), México, D.F., México
66 Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
67 Universidad Michoacana de San Niculás de Hidalgo, Morelia, Michoacán, México
68 Universidad Nacional Autónoma de México, México, D.F., México
69 Universidad Nacional de San Agustín de Arequipa, Facultad de Ciencias Naturales y Formales, Arequipa, Peru
70 Institute of Nuclear Physics PAN, Krakow, Poland
71 University of Łódź, Faculty of High-Energy Astrophysics, Łódź, Poland
72 Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal
73 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
74 Institute of Space Science, Bucharest-Magurele, Romania
75 University Politehnica of Bucharest, Bucharest, Romania
76 Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia
77 Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia
The Fitting Procedure for Longitudinal Shower Profiles
José Bellido

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Belgium – Fonds de la Recherche Scientifique (FNRS); Research Foundation Flanders (FWO); Brazil – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ); São Paulo Research Foundation (FAPESP) Grants No. 2019/10151-2, No. 2010/07359-6 and No. 1999/05404-3; Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC); Czech Republic – Grant No. MSMT CR LTT18004, LM2015038, LM2018102, CZ.02.1.01/0.0/0.0/16_013/0001402, CZ.02.1.01/0.0/0.0/18_046/00016010 and CZ.02.1.01/0.0/0.0/17_049/0008422; France – Centre de Calcul IN2P3/CNRS; Centre National de la Recherche Scientifique (CNRS); Conseil Régional Ile-de-France; Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS); Département Sciences de l’Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany – Bundesministerium für Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Württemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen; Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg; Italy – Istituto Nazionale di Fisica Nucleare (INFN); Istituto nazionale di Astrofisica (INAF); Ministero dell’Università e della Ricerca (MUR); CETSANS Center of Excellence; Ministero degli Affari Esteri (MAE), ICSC Centro Nazionale di Ricerca in High Performance Computing, Big Data...
The Fitting Procedure for Longitudinal Shower Profiles

José Bellido

and Quantum Computing, funded by European Union NextGenerationEU, reference code CN_00000013; México – Consejo Nacional de Ciencia y Tecnología (CONACYT) No. 167733; Universidad Nacional Autónoma de México (UNAM); PAPIIT DGAPA-UNAM; The Netherlands – Ministry of Education, Culture and Science; Netherlands Organisation for Scientific Research (NWO); Dutch national e-infrastructure with the support of SURF Cooperative; Poland – Ministry of Education and Science, grants No. DIR/WK/2018/11 and 2022/WK/12; National Science Centre, grants No. 2016/22/M/ST9/00198, 2016/23/B/ST9/01635, 2020/39/B/ST9/01398, and 2022/45/B/ST9/02163; Portugal – Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE); Romania – Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI, contract no. 30N/2023 under Romanian National Core Program LAPLAS VII, grant no. PN 23.2101.02 and project number PN-III-P1-1.1-TE-2021-0924/TE57/2022, within PNCDI III; Slovenia – Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, N1-0111; Spain – Ministerio de Economía, Industria y Competitividad (FPA2017-85114-P and PID2019-104676GB-C32), Xunta de Galicia (ED431C 2017/07), Junta de Andalucía (SOMM17/6104/UGR, P18-FR-4314) Feder Funds, RENATA Red Nacional Temática de Astropartículas (FPA2015-68783-REDT) and María de Maeztu Unit of Excellence (MDM-2016-0692); USA – Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689; National Science Foundation, Grant No. 0450696; The Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; and UNESCO.