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TheKM3NeTcollaboration operates twoCherenkov neutrino telescopes in the deepMediterranean
sea, ORCA and ARCA. Both detectors consist of an array of light-sensitive detectors called Digital
Optical Modules (DOMs) assembled along vertical strings anchored to the seafloor. Although the
abundant muon flux from cosmic ray air showers is a background for the main scientific objectives
of KM3NeT/ORCA and KM3NeT/ARCA, it can be exploited in various ways for calibration
purposes. In this contribution, themethods implementedwithin theKM3NeT calibrationworkflow
which exploit the muon track reconstruction are presented. For the latter, a likelihood fit of a
track hypothesis to a set of observed hits on the DOMs is performed. For calibration purposes,
the optimal position, time reference and orientation of each string of the detector can be found
as the parameters maximizing the overall likelihood of reconstructed muon tracks. The muon
track quality method is shown to reach the desired accuracy in time and position, allowing for the
determination of the relative time offsets between strings. It also represents an important tool to
cross-check position and orientation calibrations obtained by other means. Another muon-based
calibration method is used to determine the relative time offsets between DOMs. It is based on the
evaluation of the difference between the measured hit time and the one predicted from the fitted
muon track’s position.
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1. Introduction

The KM3NeT collaboration [1] operates two Cherenkov neutrino telescopes in the deep
Mediterranean sea. ORCA (Oscillation Research with Cosmics in the Abyss) is designed to mea-
sure atmospheric neutrinos oscillations, while ARCA (Astroparticle Research with Cosmics in the
Abyss) is designed to detect neutrinos from astrophysical sources. ARCA and ORCA share the
same technology and detector elements. Both detectors are instrumented with photomultiplier
tubes (PMTs) for the detection of the Cherenkov light emitted by the relativistic charged particles
produced in neutrino interactions. KM3NeT detectors consist in a 3-D array of glass-spheres
named Digital Optical Modules (DOMs) housing 31 3-inch PMTs each. The DOMs are arranged
along vertical strings called Detection Units (DU). Each DU hosts 18 DOMs, is anchored to the
seabed and remains vertical due to the buoyancy of the DOMs and to a buoy tied on its top. When
completed, each detector "building block" will consist of 115 DUs arranged side by side following
a cylindrical footprint. The geometry of ARCA is optimised to maximise its detection efficiency in
the energy range 1 TeV-10 PeV, while ORCA is built to detect neutrinos in the range 1-100 GeV. This
translates into a different spacing between the DOMs: the vertical and horizontal distances between
the DOMs of ORCA are respectively 9 meters and 20 meters, while for ARCA, the corresponding
distances are 36 and 90 meters.

To be able to reconstruct accurately the direction of neutrino events, the PMTs need to be
synchronized with a 1 ns precision, and their position determined with an accuracy of 20 cm. The
orientation of the optical modules must also be known with a precision of 3°. To calibrate the
detector in time, position and orientation, several procedures using data from dedicated instruments
located inside the DOMs [2], on DU bases or on the seafloor, as well optical data from the PMTs,
are used.

2. Calibration of KM3NeT detectors

2.1 Position and orientation calibration

The KM3NeT positioning system [3] relies on a set of acoustic emitters and receivers. The
emitters are beacons anchored on the seabed near the detector. There are two sets of acoustic
receivers: hydrophones located on the DU bases, and piezoelectric sensors glued at the South
pole of the DOMs. The position of each DOM is determined using triangulation of the acoustic
signals, constrained by a mechanical model for the DUs. For the orientation calibration, an attitude
and heading reference system (AHRS), referred to as "compass", is used. It consists of a set of
accelerometers and magnetometers mounted on the electronics boards of each DOM. An important
specificity of KM3NeT detectors is that the DOMs move and rotate over time due to sea currents.
Thus, dynamic position and orientation calibration procedures have been developped [4], updating
the positions and orientations of the DOMs every 10 minutes. The expected accuracies of those
dynamic position and orientation calibrations are less than 10 cm and a few degrees, respectively.

2.2 Time calibration

Because of delays arising at different levels of the infrastructure, the time calibration of
KM3NeT detectors must be achieved at various scales [5] to synchronize all PMTs:
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• inter-PMT (or intra-DOM): synchronize the individual photomultiplier tubes inside a given
DOM. This is done using the light resulting from the V− decay of Potassium-40 naturally
present in sea water, which can be detected as coincident hits on a few neighboring PMTs.

• inter-DOM: synchronize the optical modules of a given detection unit. A preliminary calibra-
tion is done before deployment of the DU in the sea, using a laser source. In-situ, light pulse
emitters located on the DOMs, called nanobeacons and developped by the collaboration [6],
are used to adjust the inter-DOM time calibration[7]. Atmospheric muons can also be used
for cross-checks (see Section 3.4).

• inter-DU: synchronize the detection units forming the building block. There is currently
no dedicated instrument for this inter-DU time calibration. Instead, the muon track quality
method, using the reconstructed tracks of the detected atmospheric muons, has been devel-
opped. This method will be described in the following sections of the current contribution.

3. Calibration with reconstructed atmospheric muon tracks

3.1 Atmospheric muons in KM3NeT

Cosmic rays are charged particles arriving on the Earth atmosphere with very high kinetic
energy. They interact with air nuclei in the upper atmosphere and produce showers. Among the
charged secondary particles produced, muons are the most penetrating. The atmospheric muons
with enough energy can reach KM3NeT/ORCA and KM3NeT/ARCA [8]. Although forming a
background for the main physics goals of KM3NeT, atmospheric muons can be used for cosmic ray
physics, as well as for checking the detector performance [9] and for calibration.

3.2 Muon track reconstruction

During data acquisition, a hit is produced when a photon reaching a PMT induces an electrical
signal above a defined threshold. The hit information includes a time stamp, a time-over-threshold
(not relevent in the following), and the geometrical properties of the PMT detecting the hit: position
and orientation. A series of causally-connected hits forms an event. Muon track reconstruction
algorithms process an event by fitting its observed hits with the hypothesis of a straight track of a
muon emitting Cherenkov light at a fixed angle along its trajectory. Fitting a muon track to observed
hits on PMTs in a non-linear problem. In KM3NeT, an approach with several consecutive steps is
employed. The principal step of the fit, determining the direction and vertex position of the track,
adopts a maximum likelihood approach. The likelihood is a quantity which describes the agreement
between the track hypothesis and the properties of the observed hits. In other words, it describes
the quality of the track hypothesis. The best track is the one maximizing the likelihood.

3.3 Track quality method

The principle of the track qualitymethod (TQM) [10] is to add, on top of the track reconstruction
process during which the best track properties are found, a step where the best hit properties are
found. Indeed, the likelihood of a reconstructed track depends both on the track properties and
on the observed hit properties. As the hit properties are the properties of the PMTs being hit
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Figure 1: Track quality scan for the time offset of the
DU 15 of ARCA. The metric for track quality is the
likelihood resulting from the fit of the track divided by
the number of hits used in the fit.

Figure 2: Footprint of the ARCA detector
in its 21-DU configuration.

(reference time, position and orientation), finding the best hit properties is equivalent to calibrating
the detector. Thus, the optimal calibration can be determined by reconstructing the same data with
different values of some detector parameters and monitoring the quality of the reconstructed tracks.

The current implementation of the TQM works at the Detection Unit scale. One-dimensional
track quality scans are performed over some parameters of an individual DU (keeping the parameters
of other DUs fixed): the time reference of the DU; its position along the x,y, and z axis; and its
orientation around the z-axis. An example is shown on Figure 1 for the time calibration of a DU
of ARCA. The time offset is relative to a given nominal time calibration. It is applied to all the
DOMs of the DU considered. Here, the optimal offset obtained with the muon track quality method
is around 1.2 ns, meaning that the reference time of that DU should be shifted by 1.2 ns. The
TQM is currently the standard way to obtain the time calibration at the inter-DU scale. For position
and orientation calibrations, the TQM is an important tool to cross-check results from the nominal
calibration obtained with acoustic data and compasses (see Section 2.1).

It should be highlighted that the TQM is only a relative calibration method. The quality of
reconstructed tracks will only be affected by relative shifts in the time, position and orientation of
an individual DU with respect to the rest of the detector. For instance, if all the DUs are shifted by
1 m in a given direction, then the reconstructed position of the track will be shifted by 1 m, but its
quality will not change. In addition, the accuracy of the method will be worse for DUs which are
more isolated from the others, like DU 5, 23 or 32 of ARCA (see Figure 2).

3.4 Hit time residuals method

Another calibration method using reconstructed muon tracks relies on the hit time residuals.
Once a muon track is reconstructed, the expected arrival time of a photon on each PMT can be
computed under the hypothesis of non-scattered Cherenkov photon. The expected hit time can then
be compared with the observed hit time: the difference is called the hit time residual (HTR). This
method can be used to measure the inter-DOM time offset by fitting the distribution of HTR for
each DOM: the difference in HTR value between DOMs is the inter-DOM offset to correct for.
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4. Results of the muon track quality method

4.1 Position calibration

The track qualitymethod is important to check the results from the position calibration resulting
from acoustic data. In particular, it highlights the improvement in positionning coming from the use
of a dynamic calibration, where the position of the DOMs is updated every 10 minutes, rather than
a static calibration where the fit of acoustic data is done only once and the movement of the DOMs
is neglected. To make that comparison, the same track quality scan as the one shown in Figure 1
can be done on consecutive sets of events. That way, the evolution over time of the optimal offset
found with the muon track quality, with respect to the nominal calibration relying on acoustics,
can be monitored. An example is shown in Figure 3 for one string of ARCA, covering a period
of 86 h where the sea currents were among the highest ever observed on the site. With the static
calibration, an evolving x-position offset of several meters is seen with the TQM with respect to the
acoustic positioning: this means that due to sea currents, the DU is moving relative to other DUs.
This displacement is not accounted for by static calibration. Using dynamic positioning, the offset
found with the TQM is very close to zero and almost constant over time, showing that dynamic
calibration indeed corrects for the displacement of the strings.

Figure 3: Evolution of the optimal x-position offset with respect to the acoustic positionning obtained with
the track quality method, for the DU 15 of ARCA, over a period of 86 h. Each point corresponds to the
optimal offset on a set of 5000 consecutive events.

The distribution of the optimal offsets obtained with the TQM for the 21 currently deployed
DUs of ARCA is shown in Figure 4. These are obtained for the same period as in Figure 3, both with
a static and dynamic position calibration. The same effect is seen for all DUs: when using dynamic
calibration, the offsets seen from the muon tracks are much lower, and the spread of that offset over
time drastically reduces. This shows that the movement of the DOMs is correctly accounted for.

For ORCA, the relative displacements of each DU with respect to the rest of the detector are
much smaller, even in periods of high sea currents, because the DUs are much closer to one another
(20 meters appart) than in ARCA (90 meters apart), so they move in currents of similar strength
and direction. This is illustrated in Figure 5, where the y-position offset obtained with the TQM
with respect to the acoustic position calibration is already very small (around 10 cm on average)
with a small spreading of values. As 10 centimeters is essentially the accuracy of the track quality
method for ORCA [10], using dynamic calibration does not bring a substantial improvement.
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Figure 4: Distribution of the optimal x-position offset obtained with the track quality method with respect to
the position calibration from acoustics, shown for each individual DU of ARCA and for all DUs. One entry
is an optimal offset on a set of 5000 consecutive events. The boxes contain 50% of the DU entries (between
the first and third quartiles). The whiskers show the minimum and maximum entry values.

Figure 5: Distribution of the optimal y-position offset obtained with the track quality method with respect
to the position calibration from acoustics, shown for each individual DU of ORCA and for all DUs. One
entry is an optimal offset on a set of 5000 consecutive events. See Figure 4 for the definition of boxes and
whiskers.

Figure 6: Distribution of the optimal orientation offset obtained with the track quality method with respect
to the orientation calibration from compasses, shown for each individual DU of ORCA and for all DUs. One
entry is an optimal offset on a set of 5000 consecutive events. See Figure 4 for the definition of boxes and
whiskers.
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4.2 Orientation calibration

For the ORCA detector, the muon track quality method agrees with the dynamic orientation
calibration within a few degrees, as depicted in Figure 6, obtained with the same period used in
Figure 5. This validates the calibration obtained with the compasses. Similar results are obtained
with ARCA.

4.3 Time calibration

Figure 7: Distribution of the optimal time offset obtained with the track quality method with respect to the
pre-existing calibration, for ARCA. One entry is an optimal offset on a set of 5000 consecutive events. See
Figure 4 for the definition of boxes and whiskers.

Figure 8: Distribution of the optimal time offset obtained with the track quality method with respect to the
pre-existing calibration, for ORCA. One entry is an optimal offset on a set of 5000 consecutive events. See
Figure 4 for the definition of boxes and whiskers.

Even though the time calibration does not result from the acoustic calibration procedure, the
time offset obtained with the track quality method is still dependent on the acoustic calibration due
to the degeneracy between the displacement of the DUs and the light arrival time. This is why a
spreading in the optimal time offset value is seen in Figure 7. It is more pronounced when using
static calibration for the same reason as for the position (DU movements not accounted for).

The offsets are also non-zero for some DUs, even in the dynamic case. This comes from
remaining miscalibrations in the reference time of some DUs. More specifically, DUs 4, 11, 18, 19,
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and 28 of ORCA, which are the ones with the higher time offsets, were newly deployed DUs for the
configuration studied here. It is thus expected that addiditional corrections to their time calibration
are needed. The corrections to apply are the mean values of the offsets displayed in Figures 7 and
8.

The spread of the values when using dynamic calibration (thus correcting for DU movements)
gives an idea of the accuracy of the muon track quality method for determining inter-DU time
offsets. If we take the inter-quartile difference as reference metric (height of the boxes in Figure
7 and 8), it is around 0.3 ns for ARCA and 0.1 ns for ORCA. These values are consistent with
the resolution values obtained from simulations [10], and satisfy the sub-nanosecond precision
requirement on the time calibration. The better accuracy for ORCA is expected from the smaller
distance between optical modules leading to a more precise muon track reconstruction.

5. Conclusion

Reconstructed muon tracks are used in KM3NeT for the inter-DU time calibration, achieving
the required sub-nanosecond precision. The track qualitymethod also allows to cross-check position
and orientation calibrations, confirming the accuracy of the dynamic positioning and orientation
procedure.
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