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This work presents observations of the optical emission of a lightning flash in conjunction with
a downward-directed Terrestrial Gamma-ray Flash (TGF) at the Telescope Array detector. Pre-
viously, we reported joint observations by the Telescope Array Surface Detector (TASD), the
Lightning Mapping Array, a sferic sensor, and a broadband interferometer of particle showers in
coincidence with lightning. These observations consisted of energetic showers of approximately
less than 10-microsecond duration with footprints on the ground of 3-6 kilometers in diameter,
originating in the first one to two milliseconds of downward lightning leaders and in coincidence
with the initial breakdown pulses stage of negative cloud-to-ground lighting leaders. Scintillator
waveform and simulation studies confirmed that these showers must consist primarily of gamma
radiations.

In this work, we use the TASD detector, together with a high-speed video camera, in conjunction
with multiple lightning instruments at the TASD site, to report on the optical emission associated
with a downward-directed terrestrial gamma-ray flash. Results from this study allow us to further
the understanding of the initiation and propagation mechanism of terrestrial gamma-ray flashes.
It will also further our ability to compare the most recent satellite optical emissions counterpart
of upward-directed TGFs to that of downward-directed TGFs.
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1. Introduction

Terrestrial gamma-ray flashes (TGFs) are bursts of gamma rays initiated in the Earth’s at-
mosphere. TGFs were first discovered in 1994 by the Burst and Transient Source Experiment
(BATSE) at the Compton Gamma Ray Observatory [1, 2]. Since then, satellite-based observations
of upward TGFs have accumulated from space using orbiting gamma-ray telescopes. A number
of observations have shown that satellite-detected TGFs are produced in association with lightning
flashes [3—6]. It was suggested that TGFs should also produce downward TGFs due to the symmet-
rical charge structure within thunderstorms. Studying TGFs from the ground is highly advantageous
due to their proximity to the source. Until recently, only a few TGFs had been detected at ground
level in association with overhead lightning [7-12].

Significant impediments to detecting downward TGFs have been due to the strong attenuation
of gamma radiation at low altitudes (where high-density lightning is expected), and the ground-
based detectors are not widespread enough to detect the forward-beamed radiation. Both issues have
been addressed with observations from the large-area Telescope Array Surface Detector (TASD).

The discovery of "burst" events observed by the TASD [13] in correlation with lightning flashes
has opened a new window for investigating energetic radiation from the ground. A Lightning
Mapping Array (LMA) and electrostatic field change measurements were then installed followed
by a VHF interferometer (INTF) and a fast electric field change antenna (FA) 6 km east of the
TASD. The TASD "bursts" were found to be typically associated with the first ms of the lightning
discharges, and usually lasted a few hundred microseconds [10]. It was also observed that a
TGEF clearly correlated with fast electric field changes of “initial breakdown pulses” (IBPs) at the
beginning of Intra-Cloud (IC) and Cloud-to-Ground (CG) flashes [12].

In recent years, the European Space Agency’s Atmosphere-Space Interactions Monitor (ASIM)
was mounted on the International Space Station for the purpose of studying TGFs and other related
phenomena. Above the atmosphere, ASIM is well-positioned to detect TGFs that occur at a high
altitude, and it has observed many since its launch [14—17]. ASIM has revealed, for the first time
and, with high timing accuracy, the optical emission timing and strength associated with lightning
discharges during the production of TGF observations. In this work, we report on the simultaneous
detection of a downward TGF together with the observation of the associated cloud-to-ground
lightning flash by a high-speed camera in addition to the low/high radio frequency emission. The
camera, operating at 40,000 images per second, allowed us to examine the development stage of
the lightning flash during the occurrence of a TGF. The proximity to the source and the utilization
of a suite of lightning instruments, along with a high-speed camera, have provided significant
advantages in gaining further insights into the characteristics of lightning processes associated with
TGF production. Furthermore, this approach has enabled a comparison of the optical emission
observations between lightning discharges associated with downward-moving and upward-moving
TGFs.
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2. Telescope Array (TA) and the Lightning Instruments at the TA Site

2.1 The Telescope Array Surface Detector

The Telescope Array Surface Detector (TASD) is a 700 km? array overlooked by three Flu-
orescence Detector (FD) sites [18]. The TASD comprises 507 scintillator detectors as shown in
Figure 1. Each TASD detector unit consists of upper and lower scintillator planes. Each plane
has an area of 3 m? and a thickness of 1.2 cm. The upper and lower planes are separated by a
1 mm-thick stainless steel plate, and they are read out by individual photomultiplier tubes (PMTs),
which are coupled to the scintillator via an array of wavelength-shifting fibers. The scintillator,
fibers, and photomultipliers are contained in a light-tight and electrically grounded stainless steel
box (1.5 mm thick on top and 1.2 mm thick on the bottom) under an additional 1.2 mm iron roof,
providing protection from extreme temperature variations [18].

The output signals from the PMTs are digitized locally by a 12-bit Fast Analog-to-Digital
Converter (FADC) with a 50 MHz sampling rate [19]. The TASD is designed to detect the charged
components (primarily electrons, positrons, and muons) of the EAS. An event trigger is recorded
when three adjacent SDs observe a time-integrated signal greater than 3 Vertical Equivalent Muons
(VEM) within 8 us. The VEM is a unit of energy deposit, equivalent to the energy deposited in
a single TASD scintillator plane by a vertical (and hence perpendicular to the plane) relativistic
muon. In more conventional units, a VEM is about 2 MeV per scintillator plane.

When a trigger occurs, the signals from all the SDs within + 32 us that detect an integrated
amplitude greater than about 0.3 VEM are also recorded. The trigger efficiency of UHECRs with
a zenith angle less than 45° and an energy greater than 10 EeV is approximately 100%, with a
corresponding aperture of 1,100 km?sr [18].

2.2 Types of Lightning Detectors

There are four types of lightning detectors operating at the Telescope Array site: the Lightning
Mapping Array, Slow/Fast Antenna, INTerFerometer, and a high-speed video camera shown in
Figure 1.

The Lightning Mapping Array (LMA) was developed by the Langmuir Laboratory group at
New Mexico Tech [20, 21]. The LMA provides us with detailed 3D images of the VHF radiation
produced by the lightning inside storms. An eleven-station network of sensors was deployed in
2013 over the 700 km? area covered by the TA detector. It detects the peak arrival time of impulsive
radio emissions between 60—66 MHz. In radio-quiet areas like the Utah desert, the LMA detects
VHF emissions with a time accuracy of 35 ns rms over a wide (>70 dB) dynamic range, from
<10 mW to more than 100 kW peak source power. Cell data modems connect each station to the
internet, allowing data to be processed in real-time and posted on the web to be monitored.

In August 2018, a Fast Antenna (FA) and an INTerFerometer (INTF) were deployed at the
TA site. The INTF records broadband (20—80 MHz) waveforms at 180 MHz from three flat-
plate receiving antennas, and it also determines the two-dimensional azimuth and elevation arrival
directions of the VHF radiation with sub-microsecond resolution [22]. This is done on a post-
processed basis and defines the radiation centroid in overlapping 0.7 or 1.4 us windows. Triangular
baselines of 121 m were used to maximize the angular resolution over the TASD. The Fast electric
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Figure 1: From left to right, the Telescope Array and lightning instruments detectors map, the surface
detector, the LMA station, the slow antenna station, the interferometer, and the high-speed-video camera.

field change Antenna (FA) provides high-resolution (180 MHz) measurements of the low frequency
and extremely low frequency (LF/ELF) discharge sferics, which are the key to interpreting the INTF
and LMA observations. In September 2022, a second INTF was deployed at the west side of the
TA site to record Initial Breakdown Pulses (IBPs) covering a larger area of the TA detector and
collecting lightning in 3D mode.

In August 2021, a high-speed video camera Phantom V2012 was installed. The camera
operating at 40,000 frames per second with a time interval between frames of 25.00 us and an
exposure time of 23.84 us (at the end of each frame the camera is blind for 1.14 us due to data
transfer). Each frame of the video is time-stamped utilizing a GPS antenna and has a resolution of
1280 x 448 pixels. The camera is sensitive to the visible and near-infrared spectra (400 nm - 1000
nm). The camera was installed inside a building five kilometers to the east border of the TASD.
The 20-mm focal length lens allowed a vertical viewing angle of 35 degrees, and a horizontal angle
of 84 degrees covering almost all of the TASD detectors. The camera’s position and settings were
optimized to observe downward TGF sources that are approximately 30 km from the camera and up
to 3 km above ground level. Each video had a recording length of 1.1 seconds and was automatically
triggered by changes in luminosity. Data from the camera is saved on a computer at the site and
analyzed offline.
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3. Observations

On September 11 of 2021, we observed a thunderstorm that produced multiple TGFs within
one hour at the Telescope Array site. Figure 2 shows one of the TGFs observed on that day. Figure 2
left shows the height vs. azimuth recorded by a high-speed video camera image of the lightning
flash associated with a TGF. This TGF resulted in a burst of three gamma-ray triggers reported by
the TASD detector referred to as triggers A, B, and C. The filled triangles in Figure 2 left indicate
the source height for each of these triggers. Figure 2 right shows the timing sequence of gamma,
electric field change, and INTF detections, together with luminosity observed by the high-speed
video camera.

Unlike most of the other TGFs observed at the TA site [23, 24], this energetic downward-
directed terrestrial gamma-ray is not only related to the early leader stage. The energetic observed
gamma-ray triggers were produced as the leader propagated below the cloud base. The third TGF
burst happened when the stepped leader was about halfway to the ground. The energetic observed
TGF bursts occurred during the propagation of a fast and bright downward negative leader which
resulted in a high peak current return stroke of -154 kA. The TGF presented unique features in
terms of energy deposit and duration.

The optical emissions observed by the high-speed video camera were found to start enhancing
within 25 microseconds from the onset of the TGF trigger signal and continue to increase 25-75
microseconds after the TGF trigger ceases. ASIM scientists reported that the majority of the TGF
detections associated optical pulses are observed to start after a weak increase in the optical emission
in the 337 nm and 777.4 nm photometers, and before, or at the onset of, the main ~2 ms long optical
pulse [25]. We also observe that the first TGF trigger roughly 200 us after the onset of the main
optical pulse and before the optical luminosity increases and peaks after the first TGF trigger as
shown in Figure 2. Note that, the optical emission in this observation includes luminosity peaks that
are not associated with TGFs for the same flash. This difference between upward and downward
TGF optical emissions could possibly be explained by a number of reasons one of which is the
different proximity to the source and the observational geometry.

4. Summary and Outlook

On September 11 of 2021, we observed a thunderstorm by the TASD. This storm produced
multiple TGFs within one hour. In this proceeding, we are presenting the simultaneous detection
of one of those downward-directed TGFs together with the observation of the associated cloud-to-
ground lightning flash by a high-speed camera, an INTF, and a FA. The energetic detected TGF
burst occurred while the leader was propagating below the cloud base. The fast downward negative
leader resulted in a high peak current return stroke.

To understand the physics behind the initiation and propagation of TGFs, and to further compare
the optical signature correlation between downward-directed and upward-directed TGF emissions
[25, 26] we have installed photometers at the TASD site. These photometers share the same field of
view as the high-speed video camera and will report, with much higher timing resolution, about the
optical emissions from atmospheric electrical discharge processes in three different wavelengths:
at 337.0 nm, 391.2 nm, and 777.4 nm.
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Figure 2: Left: This figure shows the elevation vs. azimuth for the whole flash in a frame of the camera.
The red, green, and blue triangles are the sources of the TGF for triggers A, B, and C consecutively. Right:
This figure shows the TASD waveforms for one of the SDs in magenta, the average luminosity in dark blue,
the electric-field waveform in green, the INTF elevation in red circles. The flash observed from initiation
until the first return stroke within 3 ms duration.
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Figure 3: Left: The Phantom high-speed video camera v2012 and the v711. Middle: A series of the return
stroke spectral images which were recorded by our spectroscopic system, at 29,990 frames per second by the
Phantom V711. Right: From each image in the middle figure, a section of 8 x 230 pixels was selected of the
first order of the dispersion to get the time-resolved spectra of the return strokes.

In addition to observing the optical emission of lightning events using the phantom-V2012 and
the photometers, we have started observing the spectroscopy of TGFs via a split-less spectroscopic
system transferred from Dr. Saba’s lab in Brazil to Utah and installed next to the V2012 at the TA
site as shown in Figure 3. The main goal of this study is to quantify the chemical components,
temperature, and electron density of the lightning flashes producing and non-producing TGFs. The
split-less spectroscopic system includes an additional high-speed camera v711 and a grism (grating
prism) placed in front of the camera. The grism can diverse light from 400 nm to 900 nm. An
example of the time-resolved optical spectra of a lightning flash that was observed in 2022 is shown
in Figure 3. The optical emission studies of lightning at the Telescope Array detector will allow us
to build further conclusions that support the model responsible for the TGF initiation and verify if
downward-directed TGFs are a variant of the same phenomenon that causes upward-directed TGFs.

Fast Antenna (V/m)

Surface Detector (FADC count)
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