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Recent progress in measurements and modeling of the Extragalactic Background Light (EBL)
has placed considerable constraints on its spectral density. These constraints are particularly
relevant for the propagation of Ultra-High Energy Cosmic Rays (UHECRs), as in the past the
EBL uncertainties have significantly impacted the result of simulations that aim at inferring
source properties from the observed UHECR spectral and composition data. In this contribution,
we show that the reduction in EBL uncertainties recently achieved makes their impact on the
propagation of UHECRs subdominant.
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1. Introduction

The extragalactic origin of Ultra-High Energy Cosmic Rays (UHECRs) is strongly supported by
theoretical arguments and experimental evidence [1]. Experimental limits on the galactic magnetic
field constrain the possibilities of confinement of cosmic rays beyond ∼10 EeV, while directional
studies with the Pierre Auger Observatory have found an increasing anistropy for energies above
∼8 EeV [2]. These highly significant measurements underline the importance of understanding
the relevant interactions of UHECRs in intergalactic space, which have been identified since more
than half a century [3]: photopair production, photopion production, and in the case of nuclei
photodisintegration.

The Cosmic Microwave Background (CMB) is the dominant target for UHECR protons that
exceed the GZK threshold at ∼50 EeV [4] while the Extragalactic Background Light (EBL) at
shorter wavelenths is of more importance at lower UHECR energies. While the CMB spectrum has
been well constrained since the launch of COBE in the late ’80s, the spectrum of the EBL is still a
matter of ongoing refinements (see, e.g., [5]).

The EBL is composed of the Cosmic Infrared Background (CIB), peaking at 10 meV, and the
Cosmic Optical Background (COB), peaking at around 1 eV, as illustrated in Figure 1. The two
broad humps have comparable energy densities (∝

∫
𝜈𝐼𝜈 d ln 𝜈, the integral below the curve in

Figure 1). Due to the lower energy of the infrared photons, the photon number density at the CIB
peak is about 100 times larger than that of the COB, and thus it is the most likely target photon field
for UHECRs below the GZK energy range.

Previous studies found that differences between EBL models had non-negligible impact in
UHECR propagation [6]. Using state-of-the art models from a decade ago [7, 8], the authors
of [6] showed that a homogeneous injection of iron nuclei out to 𝑧 = 1 would result in spectra
differing by up to 30% depending on energy. Figure 1 illustrates the spectral energy density of
the EBL at 𝑧 = 0 from up-to-date models of three different types [see 9, for a discussion]: (i) the
semi-analytic model from [7], still representative of the state-of-the-art of a-priori approaches, (ii)
the phenomenological model of [10], which is constrained with the latest galaxy counts from [11],
and (iii) the empirical model of [12], which is an updated version of the work of [8] that accounts
for the latest compilations of galaxies observed in the five fields of CANDELS[13] out to 𝑧 = 6 with
the Hubble Space Telescope. The increasing precision of measurements and the corresponding
convergence of the models, particularly at far-infrared wavelengths, reduces the range permissible
for models considerably compared to a decade ago.

In this context, we set out to estimate the impact of remaining EBL uncertainties on UHECR
propagation.

2. Impact on UHECR propagation

We select as reference the EBL model of Ref. [7] (Gilmore ‘12 in what follows), which has
been widely used in UHECR propagation studies. Two other state-of-the-art models in agreement
with present uncertainties, Andrews ‘19 [10] and Saldana-Lopez ‘21 [12] thereon, are used for
comparison. The lines labeled as “Other models” represent the models published in Refs. [8, 14–
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Figure 1: EBL models selected for this work [7, 10, 12] compared to other models [8, 14–18] in tension
with observations [11, 18–24]. Code and data available in [25].

18] that are currently disfavoured by observational constraints, some of which were previously
employed in UHECR propagation studies.

The interaction rates of UHECRs with EBL photons are obtained through integrating over the
range of EBL energies [26]:

𝜆(𝛾, 𝑧) = 1
2𝛾2

∫ ∞

0

𝑛(𝜖, 𝑧)
𝜖2 𝑑𝜖

∫ 2𝜖 𝛾

0
𝜀𝜎(𝜀)𝑑𝜀, (1)

with 𝜀 = 𝛾𝜖 (1 − cos 𝜃), 𝑛(𝜖, 𝑧) being the EBL photon density, and 𝜎(𝜀) the cross section for the
corresponding interaction. Figure 2 shows as representative examples the energy loss lengths for
nitrogen and iron nuclei for the three EBL models Gilmore ‘12, Andrews ‘19, and Saldana-Lopez ‘21.
The interactions with the CMB (dotted grey line) are prevalent at all energies but photodisintegration
interactions with the EBL are comparable at few tens of EeV. The models Andrews ‘19 and Saldana-
Lopez ‘21 are very close to each other because their spectral number densities are very close around
the peak value (∼ 10 meV), whereas interaction lengths for Gilmore ‘12 are shorter given the larger
values at that energy.

3. Impact on UHECR spectra at Earth

Figure 3 provides a comparison of UHECR spectra observed at Earth for the three EBL models.
The spectra are computed with CRPropa 3.2 [27] by injecting one nuclear species (nitrogen or iron)
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Figure 2: Energy loss lengths of nitrogen (left) and iron (right) for different EBL models. Differences in
flux are expected to matter near the propagation cut-off, if source acceleration reaches such energies.

with a power-law of spectral index 𝛼 = 2 covering energies in the range 1− 100 EeV. A continuous
and homogeneous source distribution is considered, with constant density spanning distances from
1 Mpc to 3 Gpc. The model of Gilmore ‘12 used here is part of CRPropa 3.2, as introduced in
earlier versions of the code; the more recent models of Andrews ‘19 and Saldana-Lopez ‘21 have
been implemented in CRPropa 3.2 using the existing tools to include custom photon fields which
have been introduced in [27].

The differences between the overall spectra obtained for different EBL models (black lines) are
of the order of a few percent, although reaching almost 10% when comparing to the older model
Gilmore ‘12 . These small differences are slighltly higher when comparing the spectral distributions
of individual mass groups. These larger differences appreciable in the subdominant mass groups are
a consequence of statistical fluctuations due to the considerably lower probabilities for producing
those nuclei. Overall, the differences between the models of Andrews ‘19 and Saldana-Lopez ‘21
are smaller than their respective differences to Gilmore ‘12 , as expected from the differences in
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Figure 3: Full-sky differential spectra at Earth, scaled to third power of energy, for an homogeneous injection
of nitrogen (left) and iron (right) from 1 Mpc to 1 Gpc. The total spectrum and contributions from sub-species
grouped by mass are shown as black and colored lines, respectively, as labeled in the right-hand side panel.
The three tested EBL models are displayed with different linestyles, as displayed in the left-had side panel.
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Figure 4: Relative differences of spectral fluxes for nitrogen injection. The line colors represent the mass
groups (see Figure 3) and the solid lines show the comparison of Andrews ‘19 to Gilmore ‘12, the dash-dotted
the comparison of Saldana-Lopez ‘21 to Gilmore ‘12 , and the dotted the comparison of Andrews ‘19 to
Saldana-Lopez ‘21 .
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Figure 5: Relative differences of spectral fluxes for iron injection. The line colors represent the mass groups
(see Figure 3) and the solid lines show the comparison of Andrews ‘19 to Gilmore ‘12 , the dash-dotted the
comparison of Saldana-Lopez ‘21 to Gilmore ‘12, and the dotted the comparison of Andrews ‘19 to Saldana-
Lopez ‘21 .

their EBL spectra shown in Figure 2.
The relative differences of the spectra obtained with the models of Andrews ‘19 and Saldana-

Lopez ‘21 with respect to the spectra obtained with the model of Gilmore ‘12 are shown in Figures
4 and 5. As in Figure 3, the differences between spectra based on the EBL models of Saldana-
Lopez ‘21 and Andrews ‘19 are smaller (dotted lines) than their differences with the spectra based
on the model of Gilmore ‘12 . The largest deviations appear in the spectra of mass groups with
the lowest yields: they are dominated by the statistical fluctuations between simulations, as evi-
denced by the deviation between the Andrews ‘19 and Saldana-Lopez ‘21 models. The total flux
relative differences are at most 50% when comparing to Gilmore ‘12 , while the comparison be-
tween Saldana-Lopez ‘21 and Andrews ‘19 is constrained to less than 10%. The magnitude of the
differences expected in the combined fits of UHECR spectral distributions and mass compositions
(see e.g. Ref. [28]) will be quantified in an upcoming work.
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4. Summary

We have initiated a systematic comparison of the state-of-the-art EBL models to determine the
remaining uncertainties induced on the propagation of UHECRs on cosmic scales. We select three
EBL models of different types that are consistent with the latest compilations of measurements: an
earlier model still in agreement with measurements [7] as reference, and two more recent models
[10, 12] for comparison. The propagation of UHECRs in a benchmark scenario is performed with
CRPropa 3.2 employing the aforementioned models. The spectra of the primary and secondary
nuclei from nitrogen and iron show differences smaller than 50% at all relevant UHECR energies,
while the differences between the most recent models Andrews ‘19 and Saldana-Lopez ‘21 are
smaller than 10%. Upcoming efforts will be aimed at quantifying the uncertainties induced on
the combined fit of spectral and composition data at ultra-high energies, which we expect to be
significantly reduced.
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