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Cosmic-ray air showers emit radio waves that can be used to measure the properties of cosmic-ray
primary particles. The radio detection technique presents several advantages, such as low cost
and year-round duty cycle as well as the ability to provide high sensitivity to Xmax and energy
estimation with minimal theoretical uncertainties, making it a promising tool for studying cosmic
rays at the highest energies. However, the primary limitation of radio detection is the irreducible
background from various sources that obscure the impulsive signals generated by air showers. To
address this issue, we investigated the use of Convolutional Neural Networks (CNNs), trained on
CoREAS simulations and radio backgrounds measured by a prototype station at the South Pole.
We developed two different CNNs: a Classifier that distinguishes between cosmic ray event radio
signals and pure background waveforms, and a Denoiser that mitigates background noise to recover
the underlying cosmic-ray signal. After training the networks we apply them to the air-shower data
to search for radio events. With two months data, we were able to identify 51 candidate events.
The event’s arrival direction reconstructed using CNN denoised radio waveforms is found to be
in good agreement with the IceTop reconstruction. Finally, our approach demonstrated improved
directional reconstruction compared to traditional methods.
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Air-Shower search using Radio and CNNs

1. Introduction

Radio waves emitted during the development of cosmic-ray induced air showers exhibit im-
pulsive and highly coherent characteristics. Primarily, this emission arises from the deflection of
charged particles (mainly electrons and positrons) under the influence of the Lorentz force in Earth’s
magnetic field. This emission occurs within a frequency range spanning from a few megahertz
(MHz) to a few gigahertz (GHz) in proximity to the Cherenkov ring. Radio experiments have
successfully detected and utilized these air shower radio signals to improve the estimation of vari-
ous properties, such as the energy of air showers and depth of the shower maximum, Xmax [1, 2].
In addition, radio detection offers additional advantages, including cost-effective instrumentation
and a full-year duty cycle. Because of that, radio technique is being increasingly recognized for
its potential in future cosmic-ray and neutrino experiments such as the second generation of the
IceCube neutrino observatory, known as IceCube-Gen2 [3, 4]. Moreover, radio techniques are also
being considered for enhancing current experiments, as exemplified by the proposed enhancement
of the surface detector of IceCube, also known as IceTop [5]. This enhancement involves the inte-
gration of scintillator panels and radio antennas. The motivation behind this enhancement plan is
to address the loss of sensitivity of IceTop caused by snow accumulation on top of the detectors [6].
Furthermore, this will also improve sky coverage and allow for the simultaneous measurement of
different components of air showers [7].

Despite the numerous advantages of the radio detection technique, there are outstanding chal-
lenges due to continuous background noise from galactic and extragalactic sources, in addition to
anthropogenic noise. These factors introduce interference with the air-shower signals, making it
difficult to distinguish between signal and background. To address this issue, we have employed
machine learning techniques, particularly convolutional neural networks (CNNs). The CNNs have
already been used previously by [8, 9] for this purpose. We have also used them in our previous
work and showed that the CNNs can successfully distinguish and denoise the air-shower signals,
hence improving the accuracy of the event pulse time and power within the signal [10, 11].

1.1 Prototype station of IceTop Enhancement

To assess the efficacy and design of the proposed surface enhancement array, a prototype station
was constructed in January 2020, within the footprint of IceTop, serving as a valuable test-bed [12].
Subsequently, the prototype station underwent hardware upgrades, including the replacement of
scintillator panels and the adoption of a new data acquisition system (known as TAXI). Comprising
8 scintillator panels and 3 radio antennas, the prototype station successfully recorded air shower
signals with both detection technologies [13]. Efforts are underway to deploy additional stations in
the forthcoming seasons [14].

1.2 Data from the prototype station

For now, the data collected from the scintillators and antennas is obtained independently
of the IceCube data acquisition system. These data streams are then transmitted separately to
the north, where they are merged together using timestamp information, provided by the shared
synchronization clock at the Pole. Each radio antenna has two channels (two polarization) that
record waveforms independently at a sampling rate of 1 GSa/s. The read-out of cosmic-ray signals
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in antennas is triggered by the scintillators, which require at least 6 out of 8 scintillators to register
a hit within one microsecond [12]. Additionally, pure background waveforms are recorded when
there is no scintillator trigger, with radio waveforms being periodically read out at a fixed rate
(∼ 1/min). These background waveforms, known as soft-triggered data, are used in studying the
background at the pole and training the neural networks. For the foreground, joint events containing
scintillator, radio, and IceTop data are formed when there is an overlap in the time of the scintillator
and IceTop hits.

1.3 Architecture and Training of CNNs

The network architectures utilized in this study are based on our previous work, with slight
modifications in the Classifier . For detailed information regarding the specific architectural details,
please refer to [10, 11]. The Tensorflow [15] and Keras [16] libraries of Python are employed to
create two distinct networks: the Classifier and the Denoiser . The construction of these networks
involves utilizing 1D convolutional layers paired with max-pooling and up-sampling layers to form
encoding and decoding layers, respectively.

During our testing and evaluation phase, an interesting observation emerged regarding the role
of the encoding and decoding layers, contrary to our earlier work. Specifically, we found that
incorporating the decoding layers did not yield significant improvements in the performance of the
Classifier network. This observation led us to infer that the training process primarily occurs within
the encoding layers, which are responsible for learning discriminative features from the input data.
As a result, for the Classifier network, we exclusively utilize the encoding layers with an additional
flattening and one-neuron dense layer at the end. Each convolution layer uses ReLU whereas the
dense layer uses Sigmoid as the activation function. The output of the Classifier ranges between 0
and 1, with values close to zero indicating background-like input and values close to 1 indicating
signal-like input.

In contrast, the Denoiser comprises both encoding and decoding layers, with a convolutional
layer serving as the final layer to ensure that the output waveform retains the same shape as the
input waveform. A linear activation function is employed in the final layer of Denoiser . Through
testing, it was determined that three encoding layers yield the optimal results for the Classifier ,
as increasing the number of layers does not provide significant improvements. For the Denoiser ,
three pairs of encoding and decoding layers are used.

The data utilized for training and testing the networks is generated using CoREAS Monte Carlo
simulations [17], which generate radio signals stemming from cosmic-ray air showers. Additionally,
pure background data from the prototype station is used as noise samples. The simulated signals
are combined with the background waveforms and the resulting waveforms are subsequently used
to train the networks with the pure signals serving as labels for the Denoiser . For details on the
processing of the data see [10, 11].

2. CNN implementation and Output

After the training phase, the networks are implemented within the radio component of the
analysis framework developed by the IceCube Collaboration, known as IceTray [18]. Similar to
the preprocessing applied to the training data, the scintillator-triggered radio waveforms are first
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Figure 1: The figure displays the measured waveforms for all six channels from the three antennas. The
raw waveforms, utilized as input for the networks, are depicted by solid blue lines. The cleaned waveforms,
obtained through the denoising process, are presented in solid orange color. Additionally, the waveforms
after applying the spike filter [19] are shown as black dashed lines. The output of the Classifier , represented
as the Cl_score, is displayed as text for each of the six channels.

processed to remove certain read-out artifacts. After that, all the electronic responses (e.g., the Low
Noise Amplifier (LNA) and cable attenuation) are removed from these waveforms. Subsequently,
the waveforms from each antenna undergo processing through their respectively trained CNN. The
resulting output includes the computation of a Classifier score (Cl_score) for each channel trace, and
removing the noise from the waveform is done using the Denoiser network. Figure 1 provides an
illustrative example, where the recorded waveforms from the antennas, after some pre-processing,
are depicted by blue solid lines. These waveforms serve as the input for the networks. The denoised
traces are represented by the orange solid line, while the corresponding Cl_score is provided as
text for each channel waveform. From the figure, it can be seen that all six channels receive
the maximum Classifier score and the Denoiser successfully eliminates the background from the
waveforms. Additionally, the figure also displays the filtered traces (dashed black color), which are
obtained by applying a spike filter to the raw (blue-colored) waveforms (for detailed information on
the spike filter, refer to [19]).

2.1 Quality Cuts

In the specific example illustrated in fig. 1, a best-case scenario is depicted. However, such
optimal outcomes are not always observed. Therefore, to filter out the poorly reconstructed events,
we developed a set of quality cuts. To derive the cuts, we applied both networks on pure background
waveform (soft-triggered data). The results are presented in fig. 2 (left). The y-axis represents the
Classifier score for the traces, while the denoised maximum amplitude, which corresponds to the
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Figure 2: Left: the quality cuts employed for event filtering are depicted. The y-axis represents the
Classifier score, while the x-axis represents the peak amplitude of the denoised waveforms. The allowed
values for both quantities are represented by the black dashed box. Right: distribution of log10S125 (used as
the energy proxy for IceTop) of all the events that pass the quality cuts.

maximum instantaneous amplitude computed from the denoised traces, is plotted on the x-axis. To
achieve a 99% rejection rate of background events, a simplified threshold-based cut is employed.
Specifically, in order to identify traces with a radio signal, we have chosen threshold values of
Classifier score ≥ 0.5 and denoised maximum amplitude ≥ 0.01 mV.

2.2 Reconstruction of events

To reconstruct the arrival direction of air shower events, we use the denoised waveforms. For
each antenna, we select the channel with the greater maximum amplitude to derive the arrival time
in each antenna. The direction is then estimated via fitting a shower front model given by a plane
moving at the speed of light. The fit is done using a weighted Chi-sq where the weights are taken to
be the maximum amplitude of the denoised pulse. For IceTop reconstruction, we use the standard
energy and arrival direction reconstruction [20]. Note that the angular resolution of IceTop for
energies above 10 PeV (and thus relevant for this study) is less than one degree.

3. Results

We analyzed a two-month dataset encompassing January and February of 2022 in search of
radio events. In addition to the quality cuts described earlier in section 2.1, we imposed an additional
criterion that the radio-reconstructed arrival direction must be within five degrees of the standard
IceTop reconstruction.

After applying all these quality cuts, we successfully identified 51 events during our search
period (≃ 1 / day). As an energy estimator we use the standard value of log10S125, the expected
signal in the station at a lateral distance of 125 m from the shower’s axis. This value is linear with
energy to within a few percent. The distribution of log10S125 values for the 51 events is depicted
on the right in fig. 2. For scale, log10S125 = 2 corresponds to ≈ 100 PeV primary energy of the air
shower. However, it should be noted that this energy estimation is a first-order approximation in
our case, as this parameter is primarily optimized for small zenith angles where IceTop exhibits its
highest sensitivity whereas most of our events lie in the higher zenith angle range.
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Figure 3: The distribution of arrival directions for all the radio events successfully passed the quality cuts.
Left: Zenith angle distribution indicating that the majority of events are concentrated in the higher zenith
range. Middle: Azimuth distribution of radio events. Right: Polar representation of the arrival direction of
events.

The zenith and azimuth angle distributions of radio events are shown in fig. 3. The black-filled
circle on the polar (right) plot and the dashed lines on the other plots corresponds to the Earth’s
magnetic field. At the South Pole, this corresponds to a direction approximately 18◦ from the zenith
and 30◦ degrees west of grid-north. From the left panel, it can be noted that the majority of the
identified radio events are concentrated in the large zenith angle range, with a decreasing trend as
the angles surpass 60 degrees. This can be attributed to the radio read-out triggering mechanism,
which relies on the scintillators. At large zenith angles (≥ 65◦), the efficiency of the scintillators
decreases significantly, leading to a reduced detection rate at those values. Additionally, we also
require event coincidence with the IceTop, which also exhibits decreased sensitivity at higher zenith
angles. Furthermore, no event < 20 degrees can also be attributed to the near-vertical magnetic
field present at the pole.

Even with very small statistics, looking at the azimuth, fig. 3 middle, and polar, fig. 3 right,
plots we observe an increase in event counts in the direction opposite to the geomagnetic field.
This finding aligns with our expectations, as the primary source of radio emission from cosmic rays
stems from the geomagnetic emission resulting from the Lorentz force [21].

3.1 Core Positions of radio events

The core positions of all the events were also reconstructed using the information from IceTop.
In fig. 4, left, the core locations reconstructed using IceTop are denoted by blue dots. The antenna
locations are represented by black "X" marks, while the grey dots indicate the locations of the
IceTop detectors (IceTop tanks). This plot shows that showers with core positions more than 400
meters away from the antennas were also detected. This is possible for more inclined showers due
to two geometric effects. With increasing zenith angle, the location of Xmax is further away from
the array due to the increased slant depth. The beamed cone thus has more geometric distance over
which to spread out from the shower axis. Simultaneously, the projected size of the footprint scales
like sec(𝜃). Indeed in the right panel of fig. 4 we see that the events furthest from the array are also
the most inclined.
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Figure 4: Left: the IceTop reconstructed core locations for all the events. The blue dots represent the core
positions, while the black "X" marks indicate the locations of the three antennas. The grey dots represent the
locations of the IceTop tanks (detectors). Right: The plot shows the distance of the core position from the
center of the antennas as a function of the corresponding zenith angle for each event.

Figure 5: The angular deviation of the radio reconstructed arrival direction from the IceTop is shown. The
blue distribution represents the 51 events that passed the quality cuts and utilized the denoised waveforms
for arrival direction reconstruction. The orange distribution on the other hand represents the subset of 13
events (out of the 51) where reconstruction was performed using the filtered waveform, shown in fig. 1. All
remaining events in the sample lie on the right side of the distribution, not displayed in the figure.

3.2 Comparison with Traditional methods

Finally, we conducted a preliminary comparison with the traditional method used for the search
of radio events. We selected the 51 events that passed our defined quality cuts and processed them
through the traditional analysis chain [13]. This involved taking the raw waveforms (shown in blue
in fig. 1) and applying a frequency weighting [19] to obtain filtered waveforms. The arrival direction
was then reconstructed using these filtered waveforms and compared with the IceTop reconstruction.
In fig. 5, the total angular deviation from the IceTop reconstruction is shown for both the waveforms
processed by the CNN (shown in blue) and the filtered waveforms (shown in orange). To provide a
clearer view, the plot is zoomed-in along the x-axis. The orange distribution includes only 13 out of
the 51 events within the plotted range, while the remaining events extend further towards the right
of the distribution. This comparison, however, is preliminary and a more comprehensive analysis
is the topic for the future. These results, nevertheless, already show promising improvements from
the traditional methods.
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4. Conclusion and Outlook

Presented in this work are the preliminary results of our study to search for cosmic-ray air
showers using radio waveforms, which have been classified and denoised using convolutional
neural networks (CNNs). The CNNs were trained on background waveforms obtained from the
prototype station of the IceTop enhancement station and subsequently applied to cosmic-ray radio
waveforms triggered by the scintillators. During a two-month search period in 2022, a total of 51
air-shower events with radio signals were identified. The reconstructed arrival directions, obtained
by utilizing CNN denoised waveforms, were compared to the standard IceTop reconstruction and
exhibited good agreement. Furthermore, we conducted a simple comparative test with traditional
methods, which showed promising improvements when employing CNNs. This outcome aligns
with our earlier findings, demonstrating that the denoising of pulses through CNNs effectively
reduces pulse time uncertainty in each antenna. Further improvements in CNN performance can
be achieved by utilizing preprocessed data for training purposes and integrating information from
the two channels of antennas.
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