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When calculating radio emission from an air shower, the standard approximation used in all current
air shower radio software is to assume straight-line signal propagation. This approximation is
expected to become less valid for very inclined geometries, but the magnitude of the error caused
by the approximation is yet to be ascertained. Therefore, it is critical to understand the region
of validity for this approximation as it could affect the design of next-generation radio-based
detectors. To investigate the possible error introduced by the approximation, we present results
obtained using a modified version of CoREAS combined with input data from ray tracing to more
correctly describe signal propagation in a non-uniform atmosphere for very inclined geometries
without performing the full ray tracing during simulation. We aim to determine geometries where
the straight-line approximation might introduce significant errors.
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1. Very Inclined air showers
Very inclined air showers are air shower geometries which propagate nearly horizontally. In

other words, geometries for which the zenith angle \ is large, with values between 80° and 90°.

These very inclined air shower geometries are characterized by a large radio signal footprint on the
ground. This is advantageous as they could be detected by use of a sparse and relatively inexpensive
radio array. These geometries are of particular interests for next-gen cosmic-ray or neutrino radio
detectors such as AugerPrime [1] and GRAND [2].

Modelling the signal that one would observe from a very inclined air shower is however more
complex than the analogous description for vertical air showers. Reasons for this are, among others:

• Earth curvature effects have to be taken into account.

• The signal travels through more of the atmosphere than would be the case for a vertical
geometry. Because of this it is expected that small changes in the description of the non
uniform atmosphere could have large effects on the signal that is received on the surface.

The focus of this article will be on the effect of the non-uniform atmosphere on the calculation
of the amplitude associated with the signal from a single emitter as described by the end-point
formalism. Important to note is that while an approximation of straight line propagation is often
made when calculating this amplitude, the non uniformity of the atmosphere is taken into account for
other aspects such as travel time of the signal. Previous work [3] indicates that because of a correct
treatment of relative timings between emitters, a refractive like displacement is already present
in CoREAS. This while the straight line approximation is used when calculating the amplitude.
Our aim is to investigate if this straight line approximation could break down for very inclined air
showers.

2. Modelling signal propagation
When describing signal propagation, a couple of different techniques are available:

• Finite Difference Time Domain Techniques: This approach works by solving the Maxwell
equations on a grid. While very accurate these techniques are typically computationally
expensive.

• The parabolic equation method: This technique uses an approximation of the full field to
obtain the fields in a stepwise manner. While less accurate than FDTD this method is more
computationally efficient. [4]

• Raytracing: This technique is currently the most widespread, as it is a well known method
that is more computationally efficient than the alternatives listed above. A distinction is
made between analytical raytracers, which use a fully derived expression of the ray path, and
numerical raytracers which solve the raypath in a stepwise manner.

Analytical raytracers are considered to be very fast but they rely on a perfect knowledge of
the medium as well as often approximations such as a flat Earth and a purely exponential index of
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refraction profile. While generally slower, the numerical raytracers are more versatile in the sense
that one can more easily take into account arbitrary index of refraction profiles. Important to note
is that raytracing implicitly assumes that any change in the medium happens over a scale which is
large compared to the wavelength, this extra approximation is also what sets it apart from methods
like FDTD.

For this article, results from a numerical raytracing simulation based on Fermat’s principle will be
used. The simulation takes into account Earth curvature effects as well as a multi-layer model for
the atmosphere corresponding to what is used in current simulation codes [5] [6], with each layer
being represented by an altitude-dependent exponential model. More details on the raytracer used
can be found in [7]. As a summary: the ray is found by solving Hamilton’s equations in 2D:

¤𝑥 =
𝑝𝑥

𝑛(𝑥, 𝑧) , (1)

¤𝑧 = 𝑝𝑧

𝑛(𝑥, 𝑧) , (2)

¤𝑝𝑥 =
𝜕𝑛

𝜕𝑥
, (3)

¤𝑝𝑧 =
𝜕𝑛

𝜕𝑧
. (4)

with 𝑛 the index of refraction, 𝑥 and 𝑧 cartesian coordinates and 𝑝𝑖 = 𝑛 ¤𝑥𝑖 the generalised momenta,
which represents the direction in which the ray is developing. Given initial conditions and a dif-
ferentiable index of refraction profile these differential equations can be solved numerically to find
𝑥𝑖 , 𝑝𝑖 along the raypath.

To obtain data from the raytracer for use with simulation software, one needs to take special
care in defining the geometry. This geometry is explained below and a visual representation is
given in figure (1). The origin of this geometry is defined as the intersection of a shower axis at a

x

z

\

Figure 1: Geometry for the raytracer. The red line represents the line model of a cascade and \ denotes the
zenith angle.

specified zenith angle \ with the 2D circle representing the earth at sea level. The shower is then
modelled as a line of emitters, since for large \ any displacements from this central shower axis are
expected to be small compared to the distance between emitter and receiver. Rays start from the
receiver, which can have an arbitrary position within this 2D plane, and end on the line. The choice
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of this geometry allows for a straightforward translation to geometries in CoREAS, a simulation
code that can be used as an option of the CORSIKA program to simulate radio emission from air
showers [6].

3. Implementing tabulation in CoREAS
This section describes how we use the information obtained through raytracing within current

state of the art simulation software. An approach with look-up tables allows us to investigate the
effects of the non-uniform atmosphere without the computationally intensive task of performing the
raytracing for each emission point. The implementation happens in a part of the code that computes
the boost factor, a concept that is discussed in the next section.

3.1 The geometric boost factor: straight line vs curved path

When an emitter travels in a medium, a known phenomenon is that the emitted signal can
have a propagation speed slower than the travel speed of the emitter. This allows a signal that was
emitted over an emission time interval Δ𝑡′ to arrive in a shorter observer time interval Δ𝑡. This
effect is most easily described by introducing the geometric boost factor: for a uniform medium
with 𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, it can be shown that [7]:

d𝑡
d𝑡′

= 1 − 𝑛 · 𝛽 · cos \𝐵𝐹 , (5)

with 𝑡 the observer time, 𝑡′ the emitter time, 𝛽 the velocity of the emitter divided by the speed
of light in vacuum and \𝐵𝐹 the viewing angle with respect to the momentum of the emitter, not
to be confused with the zenith angle \. When d𝑡

d𝑡 ′ = 0, the signal emitted over some finite time
interval arrives instantly at the receiver, creating a burst. Looking at Eq. (5) this would also
mean cos \𝐵𝐹 = 1

𝛽𝑛
which is the description of the Cherenkov angle in uniform media. The advan-

tage of thinking in terms of d𝑡
d𝑡 ′ is that this approach is also directly applicable in non-uniform media.

From a previous study [7], it was found that relation (5) still holds in non-uniform media, pro-
vided that one uses the index of refraction at the emission point and the initial launch angle of the
ray connecting the emission point with the receiving point. An example of the difference between
the uniform case with straight rays and the non uniform case with curved rays and their appropriate
boost factor calculations is shown in figure (2). This example also illustrates an earlier result which
indicated that calculating the boost factor with a straight line approximation potentially introduces
an error for very inclined air showers.

The corrected boost factor calculation is currently also being used in other studies, notably for
the signal from an air shower core which propagates into the ice[8] [9]. For this work instead the
focus is on signal coming from very inclined air showers.

4. The end-point formalism and CoREAS
CoREAS [6] is a current state of the art simulation code to calculate the radio signal coming

from air shower geometries. As an option of the CORSIKA program, it calculates the radio signal
coming from air shower geometries by summing the contributions of many different tracks in what
is called the end-point formalism [10].
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Figure 2: Example of boost factor calculations for an 85° zenith angle shower with the receiver at distance
𝑏 = 1400 m from the shower axis. In blue is the numerically computed derivative. Black, yellow and pink
represent different calculations of 1 − 𝑛𝛽 cos \. Black: 𝑛 at emitter, \ initial launch angle of the ray. Pink:𝑛
at emitter, \ straight line angle. Yellow: < 𝑛 > along the path and straight line angle. The black estimator
follows the derivative nicely. Note that the pink estimator is what is being used when assuming straight line
propagation. The x axis represents distance along the shower axis and the vertical dotted line is a region
from where one can expect signal.

The contribution of a single emitter in the end point formalism is [10]:

®𝐸± = ± 1
Δ𝑡

𝑞

𝑐

(
𝑟 × [𝑟 × ®𝛽]
(1 − 𝑛 ®𝛽 · 𝑟)𝑅

)
(6)

where often the straight line approximation is used such that 𝑟 denotes a normalised vector pointing
along a straight line from emitter to receiver. The goal now is to use a look up table to map the
straight line vector 𝑟 to the more correct launch vector 𝑟 ′.

First, note that in general 𝑟 is a three dimensional vector but that the problem can be reduced
to a 2D geometry by assuming spherical symmetry of the earth. This 2D geometry can then be
used for the raytracer. The steps for this transformation are outlined below. Perform a 2D rotation
in the 𝑥, 𝑦 plane with an angle 𝛿 so that 𝑟 is transformed to 𝐿 as follows:

©«
𝐿𝑥

0
𝐿𝑧

ª®®¬ =
©«
cos(𝛿) − sin(𝛿) 0
sin(𝛿) cos(𝛿) 0

0 0 1

ª®®¬ ·
©«
𝑟𝑥

𝑟𝑦

𝑟𝑧

ª®®¬
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So that 𝑟𝑧 = 𝐿𝑧 . The other two equations are:

𝐿𝑥 = 𝑟𝑥 · cos(𝛿) − 𝑟𝑦 · sin(𝛿),
0 = 𝑟𝑥 · sin(𝛿) + 𝑟𝑦 · cos(𝛿).

So that:

𝐿𝑥 = 𝑟𝑥 · cos(𝛿) − 𝑟𝑦 · sin(𝛿),

tan(𝛿) = −
𝑟𝑦

𝑟𝑥
.

Using sin(arctan(𝑥)) = 𝑥√
1+𝑥2 and cos(arctan(𝑥)) = 1√

1+𝑥2 this becomes:

𝐿𝑥 =

√︃
𝑟2
𝑥 + 𝑟2

𝑦 ,

so that the 𝑥 component of 𝐿 is the original horizontal component, as can be seen in the
diagram. This is as expected, as the rotation served to align the x-axis with the plane defined by the
origin, the emission point and the middle of the Earth. Now 𝐿 denotes a straight line vector in this
2D coordinate system. The next step is to replace this with the correct 𝑟 ′ launch vector. To do this,
the raytracer outlined in Eq. (1 - 4) is used to generate tables mapping 𝐿𝑥 to �̂�′

𝑥 . The difference
between �̂�′

𝑥 and 𝑟 ′𝑥 is that the inverse rotation still has to be applied to �̂�′
𝑥 to return to the original

frame. The 𝑧 component can be found from the normalisation �̂�′
𝑧 =

√︁
1 − �̂�

′2
𝑥 . After this second

rotation the final launch vector becomes:

𝑟 ′𝑥 =
𝑟𝑥√︃

𝑟2
𝑥 + 𝑟2

𝑦

𝐿′
𝑥

𝑟 ′𝑦 =
𝑟𝑦√︃

𝑟2
𝑥 + 𝑟2

𝑦

𝐿′
𝑥

𝑟 ′𝑧 =
√︃

1 − 𝐿
′2
𝑧

These components now allow us to use the correct 𝑟 ′ for the calculation of the boostfactor. To
summarize: we rotate the frame so that we can use the data from the 2D raytracer and afterwards
preform the inverse rotation to then let CoREAS continue the calculations with these updated values.

5. Preliminary results
To investigate the effect of the corrected boost factor we compare output traces between a ver-

sion of CoREAS with the tabulation procedure implemented and a version that has been unaltered.
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When setting up the simulation with a one-to-one table, such that the table is a mapping of
the identity relation, we note that the trace obtained with a one-to-one table is nearly identical to
the trace obtained with an unaltered version of CoREAS, with a relative error of around 10−6.
This indicates that the tabulation procedure does not introduce any artifacts in the signal. When
instead filling the tables with actual raytracing data we observe a slight discrepancy compared to
the unaltered trace. An example of these comparisons for an 85° zenith angle geometry is given in
figure 3, where the receiver position was chosen such that one could expect a strong signal.

Figure 3: An example trace when running CoREAS with a one-to-one table versus the output trace of an
unaltered CoREAS version. Left: The comparison between a trace obtained from an unaltered version of
CoREAS and a trace obtained with a one-to-one table. The residuals here are of the order 10−11. Right:
A comparison with the same input parameters, except the table is filled with actual raytracing data. The
residuals remain small, at percent level.

From this it seems that, while a small discrepancy is seen, the approximation does not break
down spectacularly for a zenith angle of 85°. However, more positions and zenith angles need to be
investigated in order to correctly estimate the error that one could introduce by approximating the
boost factor.

6. Conclusion and summary
In this article we discussed the importance and challenges of accurately modelling signal

coming from very inclined air showers. We mentioned how results from a raytracing study could
allow for a correction in the geometric boost factor that is calculated when describing radiation
through the end-point formalism. This correction came down to replacing the straight line vector
with the initial launch vector of the ray connecting emitter and receiver. A tabulation procedure was
outlined that would allow the comparison of traces between an unaltered version and a version that
uses tabulated raytracing data. From preliminary results we saw that the straight line approximation
seems to hold for 85°. More extensive checks are however needed to make a definitive claim.
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