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To understand the physics of cosmic rays at the highest energies, it is mandatory to have an accurate
knowledge of their mass composition. Since the mass of the primary particles cannot be measured
directly, we have to rely on the analysis of mass-sensitive observables to gain insights into this
composition. A promising observable for this purpose is the number of muons at the ground
relative to that of an air shower induced by a proton primary of the same energy and inclination
angle, commonly referred to as the relative muon number 𝑅µ.
Due to the complexity of shower footprints, the extraction of 𝑅µ from measurements is a chal-
lenging task and intractable to solve using analytic approaches. We, therefore, reconstruct 𝑅µ by
exploiting the spatial and temporal information of the signals induced by shower particles using
neural networks. Using this data-driven approach permits us to tackle this task without the need
of modeling the underlying physics and, simultaneously, gives us insights into the feasibility of
such an approach.
In this contribution, we summarize the progress of the deep-learning-based approach to estimate
𝑅µ using simulated surface detector data of the Pierre Auger Observatory. Instead of using
single architecture, we present different network designs verifying that they reach similar results.
Moreover, we demonstrate the potential for estimating 𝑅µ using the scintillator surface detector
of the AugerPrime upgrade.
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1. Introduction

Up to date, ultra-high energy cosmic rays (UHECRs) are the most energetic particles observed
in our Universe. As they are naturally accelerated, a deeper understanding of them gives us insights
into the most extreme processes in our Universe. However, even after decades of research, their
exact origin remains elusive [1]. To shed light on this mystery, it is essential to estimate the masses
of UHECRs arriving at Earth on a particle-by-particle basis.

Above 1016 eV, the direct detection of UHECRs is unfeasible due to their scarcity [2]. Indirect
methods work by observing parts of the particle cascades induced by the interaction of UHECRs
with air molecules. We will refer to the particle cascades as air showers. An intriguing quantity
directly correlated to the mass of the impinging UHECR is the number of muons 𝑁µ produced
during the shower. Since the lifetime of the muons is long compared to that of the shower process
most of them reach ground level.

The Pierre Auger Observatory is Earth’s largest cosmic ray detector designed to measure air
showers using the atmosphere as a calorimeter [3]. The observatory follows a hybrid detector
concept using (low-uptime) Fluorescence Detectors (FD) to measure the longitudinal evolution of
air showers [4] and a Surface Detector array (SD) to measure the (all-)particle densities at the ground
level [5]. The central part of the SD consists of 1660 water-Cherenkov detectors (WCDs) arranged in
a regular, triangular grid with a 1500 m spacing. Using air shower events detected by both detector
systems allows for a cross-calibration of the SD by using the direct energy measurement of the
FD. Since the SD measures the (all-)particle density on ground, the measured time signals contain
information about the number of arriving muons 𝑁µ. However, shower-to-shower fluctuations, the
non-muonic signals in the WCDs, and the strong degeneracy of the mass with the primary particle
energy make the estimation of the muon content non-trivial.

To avoid the need for complex analytical modeling, e.g., [6], it is, hence, reasonable to tackle
this task by using neural networks (NNs). NNs have been successfully applied to data simulated for
and taken by the Observatory. In Ref. [7], it has been shown that an NN-based approach is able to
predict the shower depth of the shower maximum 𝑋max from SD measurements. Since 𝑋max is also
a high-level observable related to the primary particle mass using a similar approach is viable for
the muon number. In addition, the Pierre Auger Observatory is currently undergoing an upgrade
process [8]. An important part of the upgrade is the addition of surface scintillator detectors (SSDs)
to most of the WCDs and the change of the detector electronics. The SSDs have a different response
to the various particles as the WCD, allowing for an improved disentanglement between the muonic
signal and the remaining parts. NNs are a simple way to test this assumption.

2. Relative muon content

Instead of predicting the unbound quantity of 𝑁µ, which depends on both the primary particle
energy and the inclination angle of the shower, we train our networks to predict the relative muon
content

𝑅µ =
𝑁µ

⟨𝑁p
µ⟩

, (1)
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where ⟨𝑁p
µ⟩ is the expected number of muons for an equivalent shower induced by a proton primary

of the same primary particle energy 𝐸 and shower inclination angle 𝜃. The definition in Eq. (1)
is motivated by the Heitler-Matthews model for hadronic air showers [9]: under the assumption
that only pions are produced during hadronic interactions, 𝑅µ ∝ 𝐴1−𝛿 , where 𝛿 is a small positive
constant.

To train NNs we use air showers simulated with Corsika [10] using the hadronic interaction
model Epos-LHC [11]. For the supervised training of NNs, we require labels for our detected shower
footprints. However, the exact number of muons at ground-level 𝑁µ is not directly accessible due to
cuts near the shower core. Therefore, we use the total number of (anti-)muons at the shower depth
𝑋 of the observatory at ground-level found in the simulation files. We denote this proxy as 𝑁C

µ .
To compute 𝑅µ from 𝑁C

µ , we need ⟨𝑁p
µ⟩ for all primary particle energies 𝐸 and all shower

inclination angles 𝜃. We parameterize the expected value for air showers induced by a proton
primary via

⟨𝑁p
µ⟩(𝐸, 𝜃) = 𝑓 (𝜃) 10𝐴+𝐵 lg 𝐸 = [𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3] 10𝐴+𝐵 lg 𝐸 , (2)

where 𝑥 = sin2 𝜃 and the set {𝑎, 𝑏, 𝑐, 𝐴, 𝐵} are fit parameters. The dependence of ⟨𝑁p
µ⟩ on the

primary particle energy is stronger than that on the inclination angle. Therefore, we perform a
two-step fit to estimate the parameters in Eq. (2). First, we estimate ⟨lg 𝑁

p
µ⟩(𝐸) by fitting solely the

exponent in Eq. (2). We then fit the remaining {𝑎, 𝑏, 𝑐} by fixing {𝐴, 𝐵}. Note that the second fit
rectifies the error of fitting ⟨lg 𝑁

p
µ⟩(𝐸) in the first step instead of ⟨𝑁p

µ⟩.
The main goal of constructing and subsequently predicting 𝑅µ is to use the quantity as an

estimate for the primary particle mass 𝐴. To assess how good we are able to separate between
showers induced by low-mass and high-mass primaries, we consider two metrics. We estimate the
separability with the commonly used merit factor between proton and iron events defined as

𝑚𝑓 =

��⟨𝑅µ⟩p − ⟨𝑅µ⟩Fe
��

√
𝜎2

p + 𝜎2
Fe

, (3)

where the subscripts denote that the average and standard deviation is computed for proton (p)
and iron (Fe) primaries. The merit factor is a measure of goodness for our final predictor and an
estimator of mass separation of air shower events. We supplement this metric using the accuracy
of classifying if a shower event has been induced by a light or heavy primary particle.

Baseline models To ensure that an NN-based approach is reasonable, we need to demonstrate its
benefits if compared to alternative reference models. Therefore, we want to show that geometric
and time signal information play a crucial role in the estimation of 𝑅µ. To exploit this type of
information in analytic approaches would require complex model building. We chose a Boosted
Decision Tree (BDT) to test a machine learning model that does not have direct access to the
geometry and time signals. To do this we flatten1 the non-time-signal inputs which are given to
the advanced NN models and add two additional hand-selected features extracted from the traces
of each detector (see Sec. 3). To show that the addition of geometric information improves the
situation, but is not sufficient, we use an alternative yet simpler NN-based model, denoted as ALT.
The ALT model uses the unflattened inputs of the BDT to predict 𝑅µ.

1We make a copy of a multidimensional array collapsed into one dimension.
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Base data set Our shower data set consists of 88 161 Corsika simulations using the hadronic
interaction model Epos-LHC. The data set contains air showers induced by proton, Helium, Oxygen,
and Iron primaries in equal proportions. The simulated air showers are uniformly distributed in
lg(𝐸/eV) in the interval [1018 eV, 1020.2 eV] and in sin2 𝜃 in the inclination range [0°, 65°). The
detector response is simulated using Offline [12]. To increase the amount of training data available,
each of the Corsika showers is used ten times. From this setup2, we have obtained 816 571 events
for Phase-I simulations (old electronics, only WCD) and 830 491 events for Phase-II simulations
(new electronics, WCD and SSD).

3. Neural network based approach

The extraction of the muon content using NNs at the Pierre Auger Observatory falls into two
categories, which differ in the use of shower information. The first category of methods uses
(mostly) localized information of triggered WCD stations [13] to determine the muon content in a
single station. From the muon content of all triggered WCDs in an event, it should be possible to
estimate another proxy for 𝑁µ. However, this analysis is beyond the scope of this study. We focus
here on the second category of NN-based analyses: the predicting of 𝑅µ from all the information
contained in the shower footprint, as has been done in Ref. [7].

Preparation of data. The SD has a triangular grid structure. To transfer the information in the
shower footprint into rectangular memory, we follow the encoding procedure described in Ref. [14].
Note that using this procedure also “normalizes” the showers using the reconstructed azimuth angle
by reflecting and rotating the shower footprints in such a way that they fall into a 30° azimuth
interval. In this way we do not need to use a special architecture to account for the corresponding
symmetries. We only encode information from stations that fit into a 5×5 grid of rectangular
memory.

We take 3 µs of the time signals in the SD stations and normalize the signals via

𝑆(𝑡) = lg(𝑆(𝑡)/[𝑆] + 1)
lg(100 + 1) , (4)

where 𝑆(𝑡) is the average of all PMTs of the corresponding detector and [𝑆] is the unit of the signal
(VEM for the WCD, MIP for the SSD). Due to the increased sampling rate of the new electronics
in Phase-II simulations we average over three successive bins making the signals equivalent to the
sampling rate of Phase-I simulations. In addition to the time signal data, we add a “Boolean” map3

of the triggered stations 𝑏tr, the standardized trigger timing information 𝑡, the information whether
a station is low-gain saturated 𝑏LG, the distance to the shower axis 𝑟sh, and the plane front shower
time 𝑡pf as station-level inputs and the inclination angle sin2 𝜃 as an event-level input. The trigger
time information 𝑡 is the standard score of 𝑡 using the average trigger time of the event as mean
value ⟨𝑡⟩ of the population and the standard deviation over all events as the standard deviation 𝜎 of
the difference 𝑡 − ⟨𝑡⟩. The distance to the shower axis 𝑟sh is the minimum distance from a station

2Since parts of the phase space lie outside of the full efficiency of the observatory, the number of shower events is
lower than ten times that of the Corsika simulations.

3We use the floating point values 1.0 and 0.0 for true and false, respectively.
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to the shower axis. We normalize it by dividing by 1000 m. The plane front time 𝑡pf is the time
a plane front would arrive at all stations relative to the arrival at the central station. Adding the
plane front time to the trigger time implicitly encodes the curvature of the shower front. For each
station-level input an event has one value for each triggered SD station. Since the the inclination
angle is a shower observable we fill a 5×5 array of memory with the constant value at the positions
of the triggered stations. Thus, for each event the additional input has a size of 5×5×6. For all
mentioned, additional inputs, we use reconstructed quantities using the standard reconstructions
found in Offline.

Basic network architecture. We build our NNs with the Python3 bindings of TensorFlow 2.12
using only standard layers already implemented in the TensorFlow framework. The basic topology
of the NN architecture employed consists of two subnetworks denoted as N1 and N2. Since the time
signals have a length of 120 time bins, it is unfeasible to directly correlate the spatial information.
Therefore, the main purpose of subnetwork N1 is to compress the information in the time signals to
𝑛f (auto-)generated features which are useful for predicting 𝑅µ. To test the importance of the trace
information, we use three distinct sub-architectures for N1. To estimate how much information is
used from the traces, we replace N1 with a fixed architecture that extracts the total signal and rise
time from the traces. This is the ALT network discussed in the previous section. We compare
ALT to a convolution-based (CNN) and LSTM-based (RNN) subnetwork that extract 12 and 16
features, respectively. Using weight-sharing, all subnetworks work independently on each time
signal and treat all time signals equally. The inputs 𝑆 of subnetwork N1 can have an arbitrary
number of channels if the CNN or RNN architectures are used. Therefore, the only difference for
the training and inference of Phase-I and Phase-II data lies in the number of channels given. When
SSD information is used, we simply treat it as an additional channel to the already existing WCD
channel. The output of N1 is then concatenated to the additional station- and event-level input data
(see Sec. 3). For ALT, CNN, and RNN the (𝑛f + 6) features for each encoded position are then
used as input for the second subnetwork N2. N2 is a 2d-convolution-based network that correlates
the spatial information in the shower footprint. A final dense layer with one unit yields the scalar
output 𝑅pred

µ . This network architecture also works for other global observables, such as the primary
energy 𝐸 [15] and the shower depth of the shower maximum 𝑋max, and is very robust.

Training process. For the NN training, we draw without replacement from the base data set (see
Sec. 2). We divide the data set in a training data and test data set. For Phase-I simulations we have
479 879 and 119 970 events, respectively, and in Phase-II simulation we have 479 882 and 119 971
events, respectively During training we use 10% of the training data set as a validation set.

Training NNs in parallel environments is non-deterministic. Therefore, we train ten NNs for
each of the different architectures using the same starting conditions. We select the best performing
one by comparing the linear correlation of 𝑅true

µ and 𝑅
pred
µ . Henceforth, we denote their difference

as Δ𝑅µ and the standard deviation of Δ𝑅µ as 𝜎Δ𝑅µ . To reduce the bias caused by the degeneracy of
mass and energy we use a loss function of the form

L (
𝑅

pred
µ , 𝑅

true
µ

)
=

∑︁
𝑥=p,...,Fe

( (
𝜎 (𝑥 )
Δ𝑅µ

)2 + (
Δ(𝑥 )𝑅µ

)2
)
, (5)
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Figure 1: Comparison of the performance of the different models on the test data sets. Left: Pearson
correlation coefficient of the predictions and true 𝑅µ for the different models over the entire phase space.
Right: Accuracy of the classification of showers induced by light (proton, Helium) and heavy (Oxygen, Iron)
primaries in different energy bins. The 99.7% uncertainty of the accuracies has been estimated using a
bootstrap algorithm. Due to the large amount of data in each bin, they are barely visible. The horizontal
dashed line is a rough estimate of the performance of the BDT for high energies.

where the superscript (𝑥) indicates that the standard deviation and mean are taken only for the
events (in the batch) induced by the primary 𝑥. For the training process, we use the Adam optimizer
using an initial learning rate of 0.0022. For all training processes the batch size is set to 128 and
the maximum number of epochs is set to 80. Training is stopped prematurely if the validation loss
does not improve over 5 epochs.

4. Results on simulation data

Comparison of different models. Fig. 1 shows the classification accuracy of events induced by
light and heavy primaries in the correlation of 𝑅true

µ and 𝑅
pred
µ for the different models presented

in Secs. 2 and 3. According to both metrics the BDT is the worst model barely reaching 70%
classification accuracy at the highest energies. The performance of the ALT model demonstrates
that the geometric information of the shower footprint is very important for the prediction of 𝑅µ.
Both the accuracy and the linear correlation improves compared to the BDT. Using the full WCD
signal trace information further improves the separability. Although, the linear correlation of the
predictions of RNN are slightly better than that of CNN, this does not affect the accuracy which
is very similar. Hence, we expect that even more sophisticated models being able to extract better
features from the traces do not necessarily help in the mass separation. The reduced gain might be
an indicator that all important information from the time signals of the WCD is already used for the
𝑅µ prediction. Adding the SSD time signals from Phase-II data to the inputs of the RNN model
yields another direct improvement in both metrics. The increase in linear correlation and accuracy
is similar to that from ALT to the CNN and RNN models.

Performance on Phase-I data. We use the bias Δ(𝑥 ) as a measure of precision and the standard
deviation 𝜎 (𝑥 ) as a measure for accuracy (see Eq. (5)) to evaluate the performance of the best
performing model on Phase-I data. Fig. 2 depicts both metrics for all available primaries of the test

6
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Figure 2: Bias (top panels) and resolution (bottom panels) of 𝑅µ predictions of the RNN-based NN for each
of the available primaries on the Phase-I test data set (see Sec. 3) binned in logarithmic Monte-Carlo energy
(left panels) and sin2 𝜃MC (right panels). The vertical, dashed black lines depict the minimum energy and
maximum inclination angle where the SD array has 100% efficiency. The number in the bottom-right corner
of the bottom-left panel is the Pearson correlation coefficient 𝜌 for the population of pairs (𝑅pred

µ , 𝑅
true
µ ). The

uncertainty on 𝜌 is the averaged 1𝜎 bootstrap confidence interval.

data set in bins of lg(𝐸MC/eV) and sin2 𝜃MC. The accuracy of the predictions improves consistently
for higher energies for all primaries. This improvement is an effect of the increased number of
triggered stations offering more information. The precision remains almost constant after the SD
reaches full efficiency at 1018.5 eV only significantly deviating in the last bin. This deviation is
due to the proximity to the edge of the training phase space. For the inclination angle the network
predictions are especially precise around 38°. This is the median inclination angle (in terms of solid
angle) in the interval [0°, 60°] where the SD is fully efficient.

Phase-I versus Phase-II. As can be seen in Fig. 1, including the SSD information in the inputs
increases the correlation between the predictions and the true values of 𝑅µ without the need to
adjust the architecture of the RNN. This improvement is even visible in the correlation plots (left
panels) in Fig. 3. Moreover, adding the SSD also shows an improvement in 𝑚𝑓 (see Eq. (3)) over
the entire energy range, even when we use reconstructed energy 𝐸∗

rec instead of the Monte-Carlo
energy 𝐸MC.

5. Conclusion

In this contribution, we have shown that it is possible to predict the muon content 𝑅µ of
hadronic air showers from shower footprints detected by the SD of the Pierre Auger Observatory
using NN-based methods. Moreover, we have demonstrated that spatial and trace information are
useful for these predictions. In addition, we have verified that the use of additional information

7
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Figure 3: Correlation of 𝑅true
µ and 𝑅

pred
µ (two left panels) for the Phase-I (first panel) and Phase-II (second

panel) data sets and comparison of merit factors (see Eq. (3)) of proton and iron predictions for both data
sets (right panel). In each case, we use data from the phase space for which the SD is fully efficient. The
black ellipses in the left panels are the 1𝜎 to 3𝜎 bounds assuming a Gaussian distribution. The gray, dotted
lines are the straight lines which intersect the major axes of the corresponding ellipses. To compute the merit
factors we cut the base data set to the phase space in which the array is fully efficient. The diagonal dashed
lines in the two left panels are the bisectors. The straight black solid line in the right panel is a fit to the
binned merit factors if Monte-Carlo energy and 𝑅true

µ would be used directly.

given by the SSD improves the prediction of 𝑅µ without requiring any adjustment to the presented
methods. This improvement results in a much better separation between light and heavy primary
particles even when using reconstructed energies.

Combining the prediction of 𝑅µ with the new methods for predicting 𝑋max from the shower
footprint will allow for a better estimate of the primary particle masses on an event-by-event
basis [16]. This estimate will be further improved by incorporating the new Phase-II data simulated
for and taken by the Pierre Auger Observatory. Due to the simplicity of the network architectures
used, we also expect that the precision and accuracy of 𝑅µ predictions will further improve when
using more complex architectures.
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