Reconstruction of muon number of air showers with the surface detector of the Pierre Auger Observatory using neural networks

Steffen Traugott Hahna,* for the Pierre Auger Collaborationb

aKarlsruhe Institute of Technology \textit{KIT}, Institute for Astroparticle Physics, Karlsruhe, Germany
bObservatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

\textit{Full author list:} https://www.auger.org/archive/authors_icrc_2023.html

\textit{E-mail:} spokespersons@auger.org

To understand the physics of cosmic rays at the highest energies, it is mandatory to have an accurate knowledge of their mass composition. Since the mass of the primary particles cannot be measured directly, we have to rely on the analysis of mass-sensitive observables to gain insights into this composition. A promising observable for this purpose is the number of muons at the ground relative to that of an air shower induced by a proton primary of the same energy and inclination angle, commonly referred to as the relative muon number R_{μ}.

Due to the complexity of shower footprints, the extraction of R_{μ} from measurements is a challenging task and intractable to solve using analytic approaches. We, therefore, reconstruct R_{μ} by exploiting the spatial and temporal information of the signals induced by shower particles using neural networks. Using this data-driven approach permits us to tackle this task without the need of modeling the underlying physics and, simultaneously, gives us insights into the feasibility of such an approach.

In this contribution, we summarize the progress of the deep-learning-based approach to estimate R_{μ} using simulated surface detector data of the Pierre Auger Observatory. Instead of using single architecture, we present different network designs verifying that they reach similar results. Moreover, we demonstrate the potential for estimating R_{μ} using the scintillator surface detector of the AugerPrime upgrade.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
1. Introduction

Up to date, ultra-high energy cosmic rays (UHECRs) are the most energetic particles observed in our Universe. As they are naturally accelerated, a deeper understanding of them gives us insights into the most extreme processes in our Universe. However, even after decades of research, their exact origin remains elusive [1]. To shed light on this mystery, it is essential to estimate the masses of UHECRs arriving at Earth on a particle-by-particle basis.

Above 10^{16} eV, the direct detection of UHECRs is unfeasible due to their scarcity [2]. Indirect methods work by observing parts of the particle cascades induced by the interaction of UHECRs with air molecules. We will refer to the particle cascades as air showers. An intriguing quantity directly correlated to the mass of the impinging UHECR is the number of muons N_{μ} produced during the shower. Since the lifetime of the muons is long compared to that of the shower process most of them reach ground level.

The Pierre Auger Observatory is Earth’s largest cosmic ray detector designed to measure air showers using the atmosphere as a calorimeter [3]. The observatory follows a hybrid detector concept using (low-uptime) Fluorescence Detectors (FD) to measure the longitudinal evolution of air showers [4] and a Surface Detector array (SD) to measure the (all-)particle densities at the ground level [5]. The central part of the SD consists of 1660 water-Cherenkov detectors (WCDs) arranged in a regular, triangular grid with a 1500 m spacing. Using air shower events detected by both detector systems allows for a cross-calibration of the SD by using the direct energy measurement of the FD. Since the SD measures the (all-)particle density on ground, the measured time signals contain information about the number of arriving muons N_{μ}. However, shower-to-shower fluctuations, the non-muonic signals in the WCDs, and the strong degeneracy of the mass with the primary particle energy make the estimation of the muon content non-trivial.

To avoid the need for complex analytical modeling, e.g., [6], it is, hence, reasonable to tackle this task by using neural networks (NNs). NNs have been successfully applied to data simulated for and taken by the Observatory. In Ref. [7], it has been shown that an NN-based approach is able to predict the shower depth of the shower maximum X_{max} from SD measurements. Since X_{max} is also a high-level observable related to the primary particle mass using a similar approach is viable for the muon number. In addition, the Pierre Auger Observatory is currently undergoing an upgrade process [8]. An important part of the upgrade is the addition of surface scintillator detectors (SSDs) to most of the WCDs and the change of the detector electronics. The SSDs have a different response to the various particles as the WCD, allowing for an improved disentanglement between the muonic signal and the remaining parts. NNs are a simple way to test this assumption.

2. Relative muon content

Instead of predicting the unbound quantity of N_{μ}, which depends on both the primary particle energy and the inclination angle of the shower, we train our networks to predict the relative muon content

$$R_{\mu} = \frac{N_{\mu}}{\langle N_{\mu}^p \rangle},$$

(1)
where \(\langle N^p_{\mu} \rangle \) is the expected number of muons for an equivalent shower induced by a proton primary of the same primary particle energy \(E \) and shower inclination angle \(\theta \). The definition in Eq. (1) is motivated by the Heitler-Matthews model for hadronic air showers [9]: under the assumption that only pions are produced during hadronic interactions, \(R_{\mu} \propto A^{1-\delta} \), where \(\delta \) is a small positive constant.

To train NNs we use air showers simulated with Corsika [10] using the hadronic interaction model Epos-LHC [11]. For the supervised training of NNs, we require labels for our detected shower footprints. However, the exact number of muons at ground-level \(N_{\mu} \) is not directly accessible due to cuts near the shower core. Therefore, we use the total number of (anti-)muons at the shower depth \(X \) of the observatory at ground-level found in the simulation files. We denote this proxy as \(N^C_{\mu} \).

To compute \(R_{\mu} \) from \(N^C_{\mu} \), we need \(\langle N^p_{\mu} \rangle \) for all primary particle energies \(E \) and all shower inclination angles \(\theta \). We parameterize the expected value for air showers induced by a proton primary via

\[
\langle N^p_{\mu} \rangle(E, \theta) = f(\theta) \, 10^{A + B \log E} = [a + b x + c x^2 + d x^3] \, 10^{A + B \log E},
\]

where \(x = \sin^2 \theta \) and the set \(\{a, b, c, A, B\} \) are fit parameters. The dependence of \(\langle N^p_{\mu} \rangle \) on the primary particle energy is stronger than that on the inclination angle. Therefore, we perform a two-step fit to estimate the parameters in Eq. (2). First, we estimate \(\langle \log N^p_{\mu} \rangle(E) \) by fitting solely the exponent in Eq. (2). We then fit the remaining \(\{a, b, c\} \) by fixing \(\{A, B\} \). Note that the second fit rectifies the error of fitting \(\langle \log N^p_{\mu} \rangle(E) \) in the first step instead of \(\langle N^p_{\mu} \rangle \).

The main goal of constructing and subsequently predicting \(R_{\mu} \) is to use the quantity as an estimate for the primary particle mass \(A \). To assess how good we are able to separate between showers induced by low-mass and high-mass primaries, we consider two metrics. We estimate the separability with the commonly used merit factor between proton (p) and iron (Fe) events defined as

\[
m_f = \frac{|\langle R_{\mu} \rangle_p - \langle R_{\mu} \rangle_{Fe}|}{\sqrt{\sigma^2_p + \sigma^2_{Fe}}},
\]

where the subscripts denote that the average and standard deviation is computed for proton (p) and iron (Fe) primaries. The merit factor is a measure of goodness for our final predictor and an estimator of mass separation of air shower events. We supplement this metric using the accuracy of classifying if a shower event has been induced by a light or heavy primary particle.

Baseline models To ensure that an NN-based approach is reasonable, we need to demonstrate its benefits if compared to alternative reference models. Therefore, we want to show that geometric and time signal information play a crucial role in the estimation of \(R_{\mu} \). To exploit this type of information in analytic approaches would require complex model building. We chose a Boosted Decision Tree (BDT) to test a machine learning model that does not have direct access to the geometry and time signals. To do this we flatten\(^1\) the non-time-signal inputs which are given to the advanced NN models and add two additional hand-selected features extracted from the traces of each detector (see Sec. 3). To show that the addition of geometric information improves the situation, but is not sufficient, we use an alternative yet simpler NN-based model, denoted as ALT. The ALT model uses the unflattened inputs of the BDT to predict \(R_{\mu} \).

\(^1\)We make a copy of a multidimensional array collapsed into one dimension.
Muon number with Auger SD using NNs
Steffen Traugott Hahn

Base data set Our shower data set consists of 88,161 CORSIKA simulations using the hadronic interaction model Epos-LHC. The data set contains air showers induced by proton, Helium, Oxygen, and Iron primaries in equal proportions. The simulated air showers are uniformly distributed in \(\lg(E/\text{eV}) \) in the interval \([10^{18} \text{ eV}, 10^{20.2} \text{ eV}]\) and in \(\sin^2 \theta \) in the inclination range \([0^\circ, 65^\circ]\). The detector response is simulated using Offline [12]. To increase the amount of training data available, each of the CORSIKA showers is used ten times. From this setup\(^2\), we have obtained 816,571 events for Phase-I simulations (old electronics, only WCD) and 830,491 events for Phase-II simulations (new electronics, WCD and SSD).

3. **Neural network based approach**

The extraction of the muon content using NNs at the Pierre Auger Observatory falls into two categories, which differ in the use of shower information. The first category of methods uses (mostly) localized information of triggered WCD stations [13] to determine the muon content in a single station. From the muon content of all triggered WCDs in an event, it should be possible to estimate another proxy for \(N_\mu \). However, this analysis is beyond the scope of this study. We focus here on the second category of NN-based analyses: the predicting of \(R_\mu \) from all the information contained in the shower footprint, as has been done in Ref. [7].

Preparation of data. The SD has a triangular grid structure. To transfer the information in the shower footprint into rectangular memory, we follow the encoding procedure described in Ref. [14]. Note that using this procedure also “normalizes” the showers using the reconstructed azimuth angle by reflecting and rotating the shower footprints in such a way that they fall into a 30\(^\circ\) azimuth interval. In this way we do not need to use a special architecture to account for the corresponding symmetries. We only encode information from stations that fit into a 5×5 grid of rectangular memory.

We take 3\(\mu \)s of the time signals in the SD stations and normalize the signals via

\[
\hat{S}(t) = \frac{\ln(S(t)/[S] + 1)}{\ln(100 + 1)}, \tag{4}
\]

where \(S(t) \) is the average of all PMTs of the corresponding detector and \([S]\) is the unit of the signal (VEM for the WCD, MIP for the SSD). Due to the increased sampling rate of the new electronics in Phase-II simulations we average over three successive bins making the signals equivalent to the sampling rate of Phase-I simulations. In addition to the time signal data, we add a “Boolean” map\(^3\) of the triggered stations \(b_{tr} \), the standardized trigger timing information \(\hat{t} \), the information whether a station is low-gain saturated \(b_{LG} \), the distance to the shower axis \(r_{sh} \), and the plane front shower time \(t_{pf} \) as station-level inputs and the inclination angle \(\sin^2 \theta \) as an event-level input. The trigger time information \(\hat{t} \) is the standard score of \(t \) using the average trigger time of the event as mean value \(\langle t \rangle \) of the population and the standard deviation over all events as the standard deviation \(\sigma \) of the difference \(t - \langle t \rangle \). The distance to the shower axis \(r_{sh} \) is the minimum distance from a station

\(^2\)Since parts of the phase space lie outside of the full efficiency of the observatory, the number of shower events is lower than ten times that of the CORSIKA simulations.

\(^3\)We use the floating point values 1.0 and 0.0 for true and false, respectively.
to the shower axis. We normalize it by dividing by 1000 m. The plane front time t_{pf} is the time a plane front would arrive at all stations relative to the arrival at the central station. Adding the plane front time to the trigger time implicitly encodes the curvature of the shower front. For each station-level input an event has one value for each triggered SD station. Since the the inclination angle is a shower observable we fill a 5×5 array of memory with the constant value at the positions of the triggered stations. Thus, for each event the additional input has a size of 5×5×6. For all mentioned, additional inputs, we use reconstructed quantities using the standard reconstructions found in Offline.

Basic network architecture. We build our NNs with the Python3 bindings of TensorFlow 2.12 using only standard layers already implemented in the TensorFlow framework. The basic topology of the NN architecture employed consists of two subnetworks denoted as N1 and N2. Since the time signals have a length of 120 time bins, it is unfeasible to directly correlate the spatial information. Therefore, the main purpose of subnetwork N1 is to compress the information in the time signals to n_f (auto-)generated features which are useful for predicting R_μ. To test the importance of the trace information, we use three distinct sub-architectures for N1. To estimate how much information is used from the traces, we replace N1 with a fixed architecture that extracts the total signal and rise time from the traces. This is the ALT network discussed in the previous section. We compare ALT to a convolution-based (CNN) and LSTM-based (RNN) subnetwork that extract 12 and 16 features, respectively. Using weight-sharing, all subnetworks work independently on each time signal and treat all time signals equally. The inputs \hat{S} of subnetwork N1 can have an arbitrary number of channels if the CNN or RNN architectures are used. Therefore, the only difference for the training and inference of Phase-I and Phase-II data lies in the number of channels given. When SSD information is used, we simply treat it as an additional channel to the already existing WCD channel. The output of N1 is then concatenated to the additional station- and event-level input data (see Sec. 3). For ALT, CNN, and RNN the $(n_f + 6)$ features for each encoded position are then used as input for the second subnetwork N2. N2 is a 2d-convolution-based network that correlates the spatial information in the shower footprint. A final dense layer with one unit yields the scalar output R_μ^{pred}. This network architecture also works for other global observables, such as the primary energy E [15] and the shower depth of the shower maximum X_{max}, and is very robust.

Training process. For the NN training, we draw without replacement from the base data set (see Sec. 2). We divide the data set in a training data and test data set. For Phase-I simulations we have 479 879 and 119 970 events, respectively, and in Phase-II simulation we have 479 882 and 119 971 events, respectively. During training we use 10% of the training data set as a validation set. Training NNs in parallel environments is non-deterministic. Therefore, we train ten NNs for each of the different architectures using the same starting conditions. We select the best performing one by comparing the linear correlation of R_μ^{true} and R_μ^{pred}. Henceforth, we denote their difference as ΔR_μ and the standard deviation of ΔR_μ as $\sigma_{\Delta R_\mu}$. To reduce the bias caused by the degeneracy of mass and energy we use a loss function of the form

$$\mathcal{L}(R_\mu^{\text{pred}}, R_\mu^{\text{true}}) = \sum_{x=p,\ldots,F_{\text{Fe}}} \left(\sigma_{\Delta R_\mu}^{(x)} \right)^2 + \left((\Delta R_\mu)^{(x)} \right)^2,$$

(5)
Muon number with Auger SD using NNs

Figure 1: Comparison of the performance of the different models on the test data sets. Left: Pearson correlation coefficient of the predictions and true R_{μ} for the different models over the entire phase space. Right: Accuracy of the classification of showers induced by light (proton, Helium) and heavy (Oxygen, Iron) primaries in different energy bins. The 99.7% uncertainty of the accuracies has been estimated using a bootstrap algorithm. Due to the large amount of data in each bin, they are barely visible. The horizontal dashed line is a rough estimate of the performance of the BDT for high energies.

where the superscript (x) indicates that the standard deviation and mean are taken only for the events (in the batch) induced by the primary x. For the training process, we use the Adam optimizer using an initial learning rate of 0.0022. For all training processes the batch size is set to 128 and the maximum number of epochs is set to 80. Training is stopped prematurely if the validation loss does not improve over 5 epochs.

4. Results on simulation data

Comparison of different models. Fig. 1 shows the classification accuracy of events induced by light and heavy primaries in the correlation of R_{μ}^{true} and R_{μ}^{pred} for the different models presented in Secs. 2 and 3. According to both metrics the BDT is the worst model barely reaching 70% classification accuracy at the highest energies. The performance of the ALT model demonstrates that the geometric information of the shower footprint is very important for the prediction of R_{μ}. Both the accuracy and the linear correlation improves compared to the BDT. Using the full WCD signal trace information further improves the separability. Although, the linear correlation of the predictions of RNN are slightly better than that of CNN, this does not affect the accuracy which is very similar. Hence, we expect that even more sophisticated models being able to extract better features from the traces do not necessarily help in the mass separation. The reduced gain might be an indicator that all important information from the time signals of the WCD is already used for the R_{μ} prediction. Adding the SSD time signals from Phase-II data to the inputs of the RNN model yields another direct improvement in both metrics. The increase in linear correlation and accuracy is similar to that from ALT to the CNN and RNN models.

Performance on Phase-I data. We use the bias $\Delta^{(x)}$ as a measure of precision and the standard deviation $\sigma^{(x)}$ as a measure for accuracy (see Eq. (5)) to evaluate the performance of the best performing model on Phase-I data. Fig. 2 depicts both metrics for all available primaries of the test
Muon number with Auger SD using NNs

Steffen Traugott Hahn

Figure 2: Bias (top panels) and resolution (bottom panels) of R_μ^\prime predictions of the RNN-based NN for each of the available primaries on the Phase-I test data set (see Sec. 3) binned in logarithmic Monte-Carlo energy (left panels) and $\sin^2 \theta_{\text{MC}}$ (right panels). The vertical, dashed black lines depict the minimum energy and maximum inclination angle where the SD array has 100% efficiency. The number in the bottom-right corner of the bottom-left panel is the Pearson correlation coefficient ρ for the population of pairs (R_{μ}^\prime, R_{μ}^{true}). The uncertainty on ρ is the averaged 1σ bootstrap confidence interval.

As can be seen in Fig. 1, including the SSD information in the inputs increases the correlation between the predictions and the true values of R_μ without the need to adjust the architecture of the RNN. This improvement is even visible in the correlation plots (left panels) in Fig. 3. Moreover, adding the SSD also shows an improvement in m_{f} (see Eq. (3)) over the entire energy range, even when we use reconstructed energy E_{rec}^* instead of the Monte-Carlo energy E_{MC}.

5. Conclusion

In this contribution, we have shown that it is possible to predict the muon content R_μ of hadronic air showers from shower footprints detected by the SD of the Pierre Auger Observatory using NN-based methods. Moreover, we have demonstrated that spatial and trace information are useful for these predictions. In addition, we have verified that the use of additional information
Muon number with Auger SD using NNs

Steffen Traugott Hahn

Figure 3: Correlation of R_{μ}^{true} and R_{μ}^{pred} (two left panels) for the Phase-I (first panel) and Phase-II (second panel) data sets and comparison of merit factors (see Eq. (3)) of proton and iron predictions for both data sets (right panel). In each case, we use data from the phase space for which the SD is fully efficient. The black ellipses in the left panels are the 1σ to 3σ bounds assuming a Gaussian distribution. The gray, dotted lines are the straight lines which intersect the major axes of the corresponding ellipses. To compute the merit factors we cut the base data set to the phase space in which the array is fully efficient. The diagonal dashed lines in the two left panels are the bisectors. The straight black solid line in the right panel is a fit to the binned merit factors if Monte-Carlo energy and R_{μ}^{true} would be used directly.

given by the SSD improves the prediction of R_{μ} without requiring any adjustment to the presented methods. This improvement results in a much better separation between light and heavy primary particles even when using reconstructed energies.

Combining the prediction of R_{μ} with the new methods for predicting X_{max} from the shower footprint will allow for a better estimate of the primary particle masses on an event-by-event basis [16]. This estimate will be further improved by incorporating the new Phase-II data simulated for and taken by the Pierre Auger Observatory. Due to the simplicity of the network architectures used, we also expect that the precision and accuracy of R_{μ} predictions will further improve when using more complex architectures.

References

[14] S. Hahn et al. [Pierre Auger], in these proceedings.
[15] F. Ellwanger et al. [Pierre Auger], in these proceedings.
[16] N. Langer et al. [Pierre Auger], in these proceedings.
The Pierre Auger Collaboration

Muon number with Auger SD using NNs

Steffen Traugott Hahn

F. Sarazin85, R. Sarmento72, R. Sato11, P. Savina91, C.M. Schäfer41, V. Scherini56,48, H. Schieler41, M. Schimaszek34, M. Schimp38, F. Schlüter41, D. Schmidt39, O. Scholten15,1, H. Schoorlemmer80,81, P. Schovánek32, F.G. Schröder80,41, J. Schulte42, T. Schulz41, S.J. Scitto3, M. Scornavacca7,41, A. Segreto53,47, S. Sehgal38, S.U. Shivashankara76, G. Sigl13, G. Silli1, O. Sima73,1, F. Simon40, R. Smaj73, R. Šmid9, P. Sommers6, J.F. Soriano80, R. Squartini10, M. Stadelmaier52, D. Stanca73, S. Stanič76, J. Stasielak70, P. Stassi36, S. Strähn39, M. Straub42, M. Suárez-Durán14, T. Suomijärvi37, A.D. Supanitsky7, Z. Svozilíková32, Z. Szadkowski71, A. Tapia29, C. Taricco63,52, C. Timmermann81,80, O. Tkachenko41, P. Tobiska32, C.J. Todero Peixoto1, B. Tómez72, Z. Torrès36, A. Travaini10, P. Travniecek32, C. Trimarelli57,46, M. Tueros3, M. Unger41, L. Vaclavek33, M. Vacula33, J.F. Valdés Galicia68, L. Valore60,50, E. Varela64, A. Vásquez-Ramírez30, D. Veberič41, C. Ventura27, I.D. Vergara Quispe3, V. Verzi51, J. Vicha32, J. Vink33, J. Vlastimil52, S. Vorobiov76, C. Watanabe26, A.A. Watsonc, A. Weinl41, L. Wiencke85, H. Wilczyński70, D. Wittkowski38, B. Wundheiler1, B. Yue38, A. Yushkov32, O. Zapparrata14, E. Zas79, D. Zavrtanik76,77, M. Zavrtanik77,76

1. Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
2. Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
3. IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
4. Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina
6. Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), and Universidad Tecnológica Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina
7. Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
8. International Center of Advanced Studies and Instituto de Ciencias Físicas, ECyT-UNSAM and CONICET, Campus Miguelito – San Martín, Buenos Aires, Argentina
9. Laboratorio Atmósfera – Departamento de Investigaciones en Láseres y sus Aplicaciones – UNIDEF (CITEDEF-CONICET), Argentina
10. Observatorio Pierre Auger, Malargüe, Argentina
11. Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
12. Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina
14. Université Libre de Bruxelles (ULB), Brussels, Belgium
15. Vrije Universiteit Brussels, Brussels, Belgium
16. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Petropolis, Brazil
17. Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Brazil
18. Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil
19. Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brazil
20. Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
21. Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
22. Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
23. Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Campina Grande, Brazil
24. Universidade Federal do ABC, Santo André, SP, Brazil
25. Universidade Federal do Paraná, Setor Palotina, Palotina, Brazil
26. Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
27. Universidade Federal do Rio de Janeiro (UFRJ), Observatório do Valongo, Rio de Janeiro, RJ, Brazil
28. Universidade Federal Fluminense, EEMVR, Volta Redonda, RJ, Brazil
29. Universidad de Medellín, Medellín, Colombia
30. Universidad Industrial de Santander, Bucaramanga, Colombia
Muon number with Auger SD using NNs

Steffen Traugott Hahn

31 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
32 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
33 Palacky University, Olomouc, Czech Republic
34 CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France
35 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université de Paris, CNRS-IN2P3, Paris, France
36 Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France
37 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
38 Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany
39 Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany
40 Karlsruhe Institute of Technology (KIT), Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
41 Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany
42 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
43 Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany
44 Universität Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany
45 Gran Sasso Science Institute, L’Aquila, Italy
46 INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
47 INFN, Sezione di Catania, Catania, Italy
48 INFN, Sezione di Lecce, Lecce, Italy
49 INFN, Sezione di Milano, Milano, Italy
50 INFN, Sezione di Napoli, Napoli, Italy
51 INFN, Sezione di Roma “Tor Vergata”, Roma, Italy
52 INFN, Sezione di Torino, Torino, Italy
53 Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
54 Osservatorio Astrofisico di Torino (INAF), Torino, Italy
55 Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Milano, Italy
56 Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy
57 Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy
58 Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy
59 Università di Milano, Dipartimento di Fisica, Milano, Italy
60 Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
61 Università di Palermo, Dipartimento di Fisica e Chimica “E. Segre”, Palermo, Italy
62 Università di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy
63 Università di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy
64 Benemérita Universidad Autónoma de Puebla, Puebla, México
65 Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPITIA-IPN), México, D.F., México
66 Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
67 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
68 Universidad Nacional Autónoma de México, México, D.F., México
69 Universidad Nacional de San Agustín de Arequipa, Facultad de Ciencias Naturales y Formales, Arequipa, Peru
70 Institute of Nuclear Physics PAN, Krakow, Poland
71 University of Łódź, Faculty of High-Energy Astrophysics, Łódź, Poland
72 Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal
73 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
74 Institute of Space Science, Bucharest-Magurele, Romania
75 University Politehnica of Bucharest, Bucharest, Romania
76 Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia
77 Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia
Muon number with Auger SD using NNs

Steffen Traugott Hahn

Universidad de Granada and C.A.F.P.E., Granada, Spain

Instituto Galego de Física de Altas Energías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain

IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands

Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands

Stichting Astronomisch Onderzoek in Nederland (ASTRON), Dwingeloo, The Netherlands

Universiteit van Amsterdam, Faculty of Science, Amsterdam, The Netherlands

Case Western Reserve University, Cleveland, OH, USA

Colorado School of Mines, Golden, CO, USA

Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA

Michigan Technological University, Houghton, MI, USA

New York University, New York, NY, USA

University of Chicago, Enrico Fermi Institute, Chicago, IL, USA

University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE, USA

University of Wisconsin-Madison, Department of Physics and WIPAC, Madison, WI, USA

Louisiana State University, Baton Rouge, LA, USA

also at University of Bucharest, Physics Department, Bucharest, Romania

School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom

d now at Agenzia Spaziale Italiana (ASI). Via del Politecnico 00133, Roma, Italy

e Fermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA

f now at Graduate School of Science, Osaka Metropolitan University, Osaka, Japan

g now at ECAP, Erlangen, Germany

h Max-Planck-Institut für Radioastronomie, Bonn, Germany

also at Kavli Institute, University of Groningen, Groningen, The Netherlands

k Pennsylvania State University, University Park, PA, USA

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Belgium – Fonds de la Recherche Scientifique (FRS); Research Foundation Flanders (FWO); Brazil – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ); São Paulo Research Foundation (FAPESP) Grants No. 2019/10151-2, No. 2010/07359-6 and No. 1999/05404-3; Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC); Czech Republic – Grant No. MSMT CR LTT18004, LM2015038, LM2018102, CZ.02.1.01/0.0/0.0/16_013/0001402, CZ.02.1.01/0.0/0.0/18_046/0016010 and CZ.02.1.01/0.0/0.0/17_049/0008422; France – Centre de Calcul IN2P3/CNRS; Conseil National de la Recherche Scientifique (CNRS); Conseil Régional Île-de-France; Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS); Département Sciences de l’Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany – Bundesministerium für Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Württemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen; Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg; Italy – Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell’Università e della Ricerca (MUR) ; CETEMPS Center of Excellence; Ministero degli Affari Esteri (MAE), ICSC Centro Nazionale di Ricerca in High Performance Computing. Big Data
Muon number with Auger SD using NNs

Steffen Traugott Hahn

and Quantum Computing, funded by European Union NextGenerationEU, reference code CN_00000013; México – Consejo Nacional de Ciencia y Tecnología (CONACYT) No. 167733; Universidad Nacional Autónoma de México (UNAM); PAPIIT DGAPA-UNAM; The Netherlands – Ministry of Education, Culture and Science; Netherlands Organisation for Scientific Research (NWO); Dutch national e-infrastructure with the support of SURF Cooperative; Poland – Ministry of Education and Science, grants No. DIR/WK/2018/11 and 2022/WK/12; National Science Centre, grants No. 2016/22/M/ST9/00198, 2016/23/B/ST9/01635, 2020/39/B/ST9/01398, and 2022/45/B/ST9/02163; Portugal – Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE); Romania – Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI, contract no. 30N/2023 under Romanian National Core Program LAPLAS VII, grant no. PN 23 2101 02 and project number PN-III-P1-1.1-TE-2021-0924/TE57/2022, within PNCDI III; Slovenia – Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, N1-0111; Spain – Ministerio de Economía, Industria y Competitividad (FPA2017-85114-P and PID2019-104676GB-C32), Xunta de Galicia (ED431C 2017/07), Junta de Andalucía (SOMM17/6104/UGR, P18-FR-4314) Feder Funds, RENATA Red Nacional Temática de Astropartículas (FPA2015-68783-REDT) and María de Maeztu Unit of Excellence (MDM-2016-0692); USA – Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689; National Science Foundation, Grant No. 0450696; The Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; and UNESCO.