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Cosmic-ray electrons and positrons (CREs) of TeV energies suffer severe energy loss during prop-
agation due to inverse Compton scattering and synchrotron radiation process, they are therefore
very useful to constrain the local cosmic-ray sources in the Galaxy. The ability to measure CREs
by ground-based imaging atmospheric Cherenkov telescopes (IACTs) has been demonstrated in
the past. In this proceeding, we will present two methods – a template fit method and a tight cut
method based on a two-steps-trained Random Forest (RF) – optimized for the detection and study
of CREs and will report on the measurement of the CREs energy spectrum from 300 GeV to 6
TeV with the MAGIC telescopes.
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1. Introduction

High-energy comsic-ray electrons and positrons (CREs) serve as a valuable tool for investigat-
ing local Galactic sources. This is because the limited travel distance of TeV CREs, restricted by
energy loss through inverse Compton scattering and synchrotron radiation processes, prevents them
from traveling beyond ∼1 kiloparsec [1]. Potential astrophysical sources of CREs, such as nearby
pulsars [2] and supernova remnants [3], have been proposed. In addition to the CRE spectrum, the
positron fraction fe+(E) = Φe+(E)/(Φe+(E) + Φe−(E)), where Φe+ and Φe− represent the fluxes of
positrons and electrons respectively, is expected to conform to the “standard model”. According
to this model, the positron fraction decreases with energy, assuming that positrons originate from
secondary production between cosmic rays and the interstellar medium.

Direct measurements of CREs have been conducted by PAMELA [4], AMS [5], and Fermi-
LAT [6], providing large statistics for energies up to hundreds of GeV. However, for the TeV energy
range, detectors with larger acceptance are required. Ground-based IACTs have proven to be
capable of providing large statistics of CREs in the TeV range, with collection areas around 104

times greater than space-based instruments. The CRE spectrum exhibits a break at around 1 TeV,
initially observed by H.E.S.S. [7], and later confirmed by direct measurements from DAMPE [9]
and CALET [8]. As for the positron fraction spectrum, PAMELA [10] and AMS [11, 13] displays
an unexpected upturn for energies above 10 GeV, suggesting the presence of additional sources
beyond those predicted by the “standard model”. Investigating the possible sources to explain the
anomaly in the positron fraction spectrum has attracted significant attention, including astrophysical
models and intriguing possibilities like dark matter particle annihilation or decay.

To solve the mystery of where TeV CREs come from and understand the unexpected increase
in the positron fraction, it is important to have models that can explain both the CRE spectrum and
the positron spectrum simultaneously. This makes it crucial to accurately measure CREs with large
amounts of data using IACTs. These measurements will greatly contribute to our understanding of
the origin of CREs and help narrow down the possible explanations.

2. Observation and Data

MAGIC is a stereoscopic system located at the El Roque de los Muchachos observatory in La
Palma, Spain. It consists of two IACTs with a diameter of 17 meters each. The observatory is
situated at coordinates 28.8°N, 17.8°W at an elevation of around 2200 meters.

IACTs detect the emission of Cherenkov light produced by charged particles of atmospheric
showers, which are generated by the interaction of primary particles with the Earth’s atmosphere.
Therefore they cannot distinguish between CREs and γ-rays, since they call initiate electromagnetic
showers. For this reason, the careful selection of the field of view (FoV) is crucial to minimize the
contamination from γ-rays. The MAGIC data used in this analysis have been chosen based on the
following criteria:

• Located at Galactic latitude |b| > 20◦ to reduce the contamination from diffuse γ-ray emission
from the Galactic plane.

• No known point γ-ray emission from the FoVs.
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• No bright stars in the FoVs to reduce the noise caused by star light.

In this analysis, only events with a zenith distance below 35 degrees and observed under favorable
weather conditions were selected. Approximately 220 hours of MAGIC data were used, and the
low-level analysis was conducted using the standard software MARS [12] developed by MAGIC.

3. Methods

The primary challenge in CRE analysis lies in effectively rejecting background events. In the
standard analysis of MAGIC, the background is estimated by considering the corresponding regions
in the camera where no signal events are anticipated. However, due to the diffuse nature of CREs,
the background estimation cannot be performed using the same approach. In this proceeding, two
methods are introduced.

3.1 RF-Fit method

The RF-Fit method is a commonly used template fit method in previous CRE spectrum analyses
with IACTs. This method involves employing templates for both the background and signal
components in order to fit with real data. The background template is based on a large dataset of
proton and helium Monte Carlo (MC) simulations, while the signal template consists of MC CREs.
To distinguish between particle species, a machine learning technique called Random Forest (RF)
is used to calculate a parameter known as “hadronness”, which indicates the likelihood of a particle
being classified as a hadron. In this analysis, diffuse MC protons and MC CREs are used as training
samples to develop the hadronness estimator. This estimator is then applied to another samples of
MC hadrons and MC CREs, as well as real data. Each event is assigned a hadronness value ranging
from 0 to 1, where a value close to 0 suggests a high likelihood of being a signal event, while a
background template is expected to have a higher hadronness value, i.e., closer to 1.

The distribution of hadronness is influenced by the distribution of pointing directions. To
minimize the systematic uncertainties caused by the pointing directions, a tracking MC simulation
method has been developed, allowing background and signal events to be simulated with the
same pointing trajectories as the actual data. For the templates, events are selected if their incoming
direction is within 1 degree around the camera center. The hadronness distribution of two templates,
one for the hadronic background events and one for the signal events, are then fitted to the real
data to determine the scaling factors. This is achieved through an extended likelihood fit within the
hadronness range 0 to 0.4. An example of a template fit for the energy range between 598.6 GeV
and 753.6 GeV is shown in Figure 1.

In each energy range, optimized hadronness cuts are implemented to achieve the highest
significance. After applying the hadronness cut, the number of excess events is obtained using the
equation Nexc = Nobs − A · Nhad, where Nobs is the number of observed events, A is the scaling
factor from the fit for the hadronic template, and Nhad represents the number of events of hadronic
template.

3.2 Two-Step RF method

The Two-Step RF method is a novel approach that uses the RF algorithm twice, where the
second time of RF algorithm effectively distinguish signal events from signal-like background

3



P
o
S
(
I
C
R
C
2
0
2
3
)
3
2
3

Cosmic-ray electron and positron spectrum with MAGIC Yating Chai

Figure 1: An example of a template fit is presented for the energy range spanning from 598.6 GeV to 753.6
GeV. The hadronness distributions of proton+helium and signal events are represented by blue and orange
histograms, respectively. The red band represents the best fit model. Signal events tend to have hadronness
values near 0, while hadronic events exhibit hadronness values closer to 1.

events. In first RF, all the MC protons and CREs are used to train the RF and generate the initial
estimator. Second RF takes advantage of the hadronness information estimated by the first RF.
Specifically, the second RF is trained using MC protons and CREs with a hadronness value lower
than 0.3. This allows the new RF to discern subtle differences between the signal and signal-like
hadronic events. Figure 2 illustrates the hadronness distribution of protons obtained through the
First Step RF and the Second Step RF in the range 0 to 0.5. When hadronness is estimated using the
First RF, the number of proton events steadily increases from 0 to 0.1 and then remains relatively
constant from 0.1 to 0.5. On the other hand, when hadronness is estimated using the second RF,
the number of proton events is significantly reduced in the low hadronness region.

The number of background events is significantly reduced in the low hadronness region when
using the secondRF for hadronness estimation. Consequently, after applying a very tight hadronness
cut, only few background events are expected to remain. There is an example to show how the cut
position for energy bin from 1194.3 GeV to 1503.6 GeV is determined based on the flux versus
efficiency as depicted by the blue dots in the right panel of Figure 3.

Theoretically, as the hadronness efficiency increases, the flux gradually rises due to the in-
creasing level of contamination. Some fluctuations are observed at very low hadronness efficiency
levels, but they eventually stabilize. The fluctuations in the first few bins could be attributed to either
insufficient statistics or discrepancies between the MC and observed data resulting from excessively
low efficiency cuts. It is possible that both factors contribute to the observed fluctuations. The
best-cut position, indicated by the red dot, is determined based on the minimum contamination after
considering the fluctuations.

The expected contamination rates resulting from the survived efficiency cuts are estimated. The
contamination from γ-rays is negligible thanks to the careful data selection process. Additionally,
the contamination from helium is also negligible due to the high electron and hadron separation
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Figure 2: Comparison of the hadronness distribution of protons calculated by the First Step RF and the
Second Step RF. It is observed that the number of proton events in the low hadronness region is considerably
reduced when utilizing the Second Step RF. This reduction enables the application of a very stringent
hadronness cut, resulting in a higher purity of signal events.

power of the second RF. Therefore only the contamination from protons are considered. The steps
to calculate the contamination rates from protons are as follows:

• Calculate the flux ratio of protons to CREs using published data, which is approximately 530
at an energy of 400 GeV Using AMS resuls [5, 14].

• Determine the collection area ratio of protons and CREs based on the efficiency cuts. This is
done by estimating the collection areas using MC simulations for protons and CREs.

• Use the flux ratio and collection area ratio to calculate the contamination rates from protons.
The contamination rates can be seen in the left panel of Figure 3.

After subtracting the corresponding contamination rates at each efficiency position, the flux
multiplied by E3 without contamination is represented by the orange dots in the right panel of
Figure 3. The orange dots, representing the the flux multiplied by E3 without contamination,
demonstrate a relatively stable pattern compared to the rising trend observed in the flux with
contamination. However, there remains a systematic difference among the contamination-subtracted
data points with different efficiencies, especially between the best-cut position and the efficiency
cut by 10%.

4. Spectrum

Using the two methods, the energy spectrum of CREs was calculated across the energy range
of 300 GeV to 6 TeV. Both methods yield consistent spectra, which can be described by a broken
power-law function. The break energy is estimated to be around 900 GeV. Below the break energy,
the energy index of the spectrum is approximately -3, while above the break energy, the index
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Figure 3: The left panel shows the contamination rates vary with changes in the hadronness efficiency at
energy range from 1194.3 GeV to 1503.6 GeV. The best-cut position is shown as a red dot. The right panel
shows the flux multiplied by E3 after the subtraction of contamination.

is around -3.7. The goodness-of-fit statistics, represented by χ2/do f , are 2.44/6 for the RF-Fit
method and 1.56/4 for the Two-Step RF method. The main source of systematic uncertainty arises
from the energy reconstruction, with an estimated uncertainty of 15%.
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