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1. Introduction

Establishing limits on the ultra-high-energy cosmic photon flux is of importance for verifying
theoretical models of evolution of astrophysical objects [1–3] and for the search for new physics
[4–6]. Recently, several experiments reported evidence for the detection of ultra-high-energy
photon-induced events from GRB 221009A [7–11]. How such photon-like particles have reached
the Earth is yet unknown, and this observation may point to physics beyond the standard model
[12–14]. This motivates for a search for photon-like-induced events in the Telescope Array’s data.

Telescope Array [15, 16] is a hybrid detector located in Utah, USA. Its Surface Detectors (SD)
comprise of 507 scintillation detectors, arranged in a rectangular grid covering an area of 680 km2.
All stations are calibrated in real time and register signals with 20 ns time resolution in conventional
units called “minimal ionizing particles”. Each SD has two scintillation layers and, when triggered,
the data from consecutive 128 time bins is read out and saved for further analysis.

Unlike the fluorescence detectors, SDs operate almost under all weather conditions. Therefore,
they have bigger exposure time than the fluorescence detectors, which is important for establishing
limit on the photon flux. This is the primary reason, for which the present work leverages only SDs.

The data provided by solely SDs is not as rich as by a combination of fluorescence and surface
detectors, making it harder to discern photon- and proton-induced events. This drawback can be
resolved by using machine learning to identify photon-like induced events. In this report, we present
the updated results on the search for photon-like-induced events, using a neural network for the
analysis of Telescope Array’s SD data collected during the last 14 years.

2. Monte-Carlo simulation

For training a neural network, we used Monte-Carlo simulation of the data. Namely, SD
responses have been simulated for proton and photon air shower primaries. Elements heavier than
protons were not employed, because they may be easily distinguished from photon-induced events.
Moreover, the exact composition of ultra-high-energy cosmic rays is unknown. Hence using only
protons as air shower primaries, besides photons, provides the most conservative and reliable results.

For the simulation of Monte-Carlo data, we used CORSIKA [17] with QGSJET II-03 [18] and
FLUKA [19] for high and low energy hadronic interactions, correspondingly, and EGS4 [20] for
electromagnetic interactions. Thinning and dethinning procedures were used during the simulation.
Detectors’ response was obtained using GEANT4 [21] based look-up tables. We used real-time
array configuration and calibration tables, which allows for the simulated data to be processed
by reconstruction algorithms in the same way as the real experimental data. The proton’s energy
spectrum was chosen to coincide with the experimentally expected one, while for photons the
spectrum was proportional to the inverse energy.

3. Reconstruction and quality cuts

Before analyzing the events with a neural network, they were processed via standard algorith-
mic reconstruction procedure [22]. It is based on a joint fit of air shower’s geometry and lateral
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Figure 1: Architecture of the neural network.
Arrows show the data flow.

Figure 2: Schematic architecture of the temporal de-
tector bundle.

distribution function, providing an estimate of such parameters as Linsley front curvature, recon-
structed position of the shower core, e.t.c. Additionally, we estimated the energy of the primary
particle as if it was a photon.

To ensure good quality of the events, the following cuts have been imposed: (1) reconstructed
zenith angle is below 55°; (2) at least 7 detectors were triggered; (3) reconstructed position of
the shower core is located within the detectors array and at least 1200 meters away from its
boundary; and (4) joint geometry and lateral distribution profile fit was done with a suitable
accuracy, 𝜒2/𝑑.𝑜. 𝑓 . < 5. The same reconstruction procedure and quality cuts were applied to
the real experimental data. Additionally, we have excluded the events, whose registration time is
within a 10-minute interval, related to the lightnings registered by the National Lightning Detection
Network at the location of SDs.

4. Neural Network architecture

For identifying photon-like induced events in the experimental data, we trained a neural
network to distinguish between the Monte-Carlo simulated proton-induced and photon-induced
events. Neural network’s architecture, presented in figure 1, is identical to the network used for
mass composition analysis of SD data [23], with the hyperparameters optimized for the given task.
It contains the following four main components.

(1) Spatial detector bundle. This part of the neural network is designed to extract geometrical
features of an event. It takes as input an array of 6x6 SDs, centered around the reconstructed position
of the shower’s core. For each of these detectors, its geometrical position, integral registered charge,
and activation times are provided. For the detectors that were not triggered in an event, the data is
filled with zeros. So formed data is passed through two-dimensional convolution layers to extract
useful geometrical features of an event.

(2) Waveform with the largest integral charge. For each event, we identify a detector with
the largest registered integral signal. One may consider the corresponding waveform as a one-
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dimensional image with 2 channels, that is, of shape (128,2). By passing it through several
convolution layers, we extract specific characteristics of this waveform.

(3) Temporal detector bundle. The general scheme of data processing in this section of the
neural network is presented in figure 2. First, all of the detectors triggered in an event are ordered
according to their activation times. Further, the waveforms registered by each of these detectors
are processed by an encoder. The encoder takes a waveform as input, passes it through a series of
convolution and recurrent layers, and outputs lower-dimensional waveform features. This results
in a time-order sequence of signal features. Finally, this sequence is analyzed by a recurrent layer,
namely, by a long short-term memory layer, which outputs the characteristics of an event.

(4) Reconstruction parameters. We use the reconstructed event’s characteristics, such as
estimated energy, primary particle’s incoming direction, 𝑆800 and others (see [24] for the full list of
such parameters) as an additional input to the neural network.

The features from all of the above-mentioned neural network blocks are concatenated and
passed through three fully-connected (dense) layers. The output of the last layer is a number,
𝜉 ∈ [0; 1], representing neural network’s confidence that the corresponding event is photon-like.

To search for photon-like induced events, one needs to minimize the number of false-positive
identification cases, that is, the number of proton primaries identified as photon primaries by the
neural network. For this purpose, we implemented the following features:

(1) The weights for proton-induced events were set to 5, while for the photon-induced events
the weights are 1. This forces the neural network to pay more attention to proton-induced events
and thus improve their identification accuracy.

(2) For training the neural network, we used a special loss function called focal loss [25]. It
allows to decrease the number of false-positive identification cases by forcing the neural network to
pay more attention to events that are hard to classify.

(3) We trained an ensemble of neural networks and averaged their predictions. The introduction
of such a “board of expert” allows to reduce the specifics of individual neural networks, and thus
decrease the number of false-positive identifications.

5. Method

After training the neural network, one can plot the histogram of neural network’s predictions
for Monte-Carlo proton-induced and photon-induced events. The latter were weighted to yield the
spectrum proportional to 𝐸−2, which is close to the one expected experimentally. The resulting
histogram is shown in figure 3.

To get the optimal classification threshold, note that we do not expect photon-induced events
in the real experimental data. Correspondingly, to get the strongest constraint on the photons flux,
we minimize the following quantity:

𝜌 =
𝑁𝑚𝑎𝑥 (𝜉)
𝐸 (𝜉) , (1)

where 𝜉 is the classification threshold, 𝐸 (𝜉) is the photons’ efficiency (the fraction of true photon-
induced events to the right of the classification threshold), and 𝑁𝑚𝑎𝑥 is the maximal number of
photon-like induced events, expected in experimental data at 95% confidence level. To evaluate
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Figure 3: Comparison of the neural network’s predictions for SD data, lightnings, and Monte-Carlo proton-
induced and photon-induced events.

𝑁𝑚𝑎𝑥 , we first count the number of false-photon identifications on the Monte-Carlo dataset for a
given 𝜉. Further, this number is multiplied by the ratio of the number of experimentally registered
events to that of the Monte-Carlo dataset, to yield the expected number of false photon-like-induced
events in the experimental data. Finally, based on this value, we evaluate the 𝑁𝑚𝑎𝑥 at the 95%
confidence level.

For the described procedure to be correct, the histograms of neural network’s predictions on
Monte-Carlo and experimental data should be the same. As we are using only proton-induced air
shower, the histogram for the Monte-Carlo simulated data should be, in fact, slightly shifted to the
right (photon-like) side. As one can see from figure 3, this is indeed the case. Thus, the procedure
is correct and provides a conservative limit on the photon flux.

To verify that the neural network’s predictions are reliable, we studied the neural network’s
prediction on events that are correlated with lightnings registered near SDs, depicted in figure 3.
The corresponding histogram has a peak at 𝜉 ≃ 1, which indicates that the neural network learned
correctly to identify photon-like-induced events.

6. Results

To estimate the photons’ flux, we have calculated the effective SD exposure after taking
into account the quality cuts on events, and dropping off events to the left of the classification
threshold. For each of the energy ranges, the optimal classification threshold has been established
independently, on a separate Monte-Carlo data set. The resulting limits on photons’ flux are
presented in table 1 and are depicted on figure 4. We would like to note that the number of
observed photon-like-induced events in SD data is within the 95% confidence level of the expected
false-photon identifications. Thus, we do not see evidence for photon-like-induced events in TA
SD data.
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Figure 4: Photon flux limits obtained by various collaborations.

Energy,
eV

Effective exposure,
km2 · sr · yr

Number of photon candidates,
expected

background
observed in data

Upper photon flux limit,
km−2 · sr−1 · yr−1

1019.0 2366.5 0.0 0 1.3 · 10−3

1019.5 2974.0 0.304 0 1.0 · 10−3

1020.0 4933.8 0.78 1 1.0 · 10−3

Table 1: Resulting photon flux limits.
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