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1. Introduction

The Giant Radio Array for Neutrino Detection (GRAND) [1] is a planned large-scale radio-
observatory of ultra-high-energy (UHE, 𝐸 ≳ 108 GeV) cosmic particles: cosmic rays, gamma
rays, and neutrinos. UHE particles initiate extensive air showers (EAS) in the Earth’s atmosphere,
whose radio signature is observable using affordable radio antennas. In its final stage, GRAND
would reach a huge exposure with 20 arrays of 10,000 radio antennas, each occupying 10,000 km2,
adding up to 200,000 km2 gathered in favourable radio-quiet sites worldwide. We expect huge
amounts of data to be collected at the final stage of GRAND and at the earlier stages, including the
currently prepared GRANDProto300. This prototype array of 300 antennas will, for the purpose
of understanding the radio environment and tuning the trigger, collect a lot of background transient
events.

The need for fast access to a large amount of collected data, the need for fast storing of
data-processing results, and the need for analysis at different stages, from trigger performance to
EAS reconstruction, calls for the use of a very efficient data format, both in terms of size and i/o
speed, with a well planned and convenient data structure. At the same time, efficiency should be
accompanied by the convenience of data analysis. In the following sections, we describe the type of
data we acquire in the experiment and the most common processing chains and analyses performed
on it. This leads to describing the chosen data structure and the physical data format. Finally, we
describe two Python interfaces to our data. The first one is convenient for processing large quantities
of data, and the second is dedicated to detailed, event-by-event data analysis, such as reconstruction
of EAS parameters. Both interfaces are part of a Python module for GRAND data handling and
analysis — GRANDlib1.

2. The input data and main data-processing chains

The data in the GRAND experiment, like in most experiments of this type, can come from two
sources: experimental hardware or simulators. These two data sources differ in content, as detailed
below.

Hardware data come in the proprietary binary format generated by the electronics of each of
the detector units (DUs) containing antennas. The main part is the ADC traces — counts vs time
bin of the analogue to digital converter, encoding voltage of every channel — three connected to X,
Y and Z arms of an antenna, and one floating channel. The traces from several DUs, together with
additional information, such as GPS data and electronics settings, are merged into one event by the
central DAQ and stored.

Simulated data contain the value of the electric field of the EAS at the position of a simulated
antenna vs time. These traces, along with the input parameters of the simulation, such as the
primary particle type, energy and direction, and additional simulation-specific information, such as
shower development profiles, are stored in simulator-specific format.

The most common goal of the data analysis in a stable experiment is the reconstruction of the
EAS parameters, such as 𝑋max, energy, and direction, from the hardware data. This reconstruction
is based on a reconstructed electric field, which comes from converting the ADC counts to voltage,

1https://github.com/grand-mother/grand
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disentangling experimental influences of cables, filter, LNA, etc., and finally, deconvolving the
so-called antenna effective length. Such a field is only an estimation of the real one that reached the
antenna and makes the analysis results approximate. Therefore, in the case of simulated data, we do
not directly use the electric field provided by the simulator. Instead, simulations are degraded with
experimental effects. First, the simulated electric field is converted to analogue voltages according
to the antenna’s effective length. Then, these voltages are convolved with the responses of all
hardware elements, and noise is added. Finally, the result is digitised, yielding a signal mimicking
a real voltage measurement. This digitised signal is used as input for reconstructing the simulated
electric field.

3. The data structure and physical format

3.1 The selected physical data format

The GRAND Collaboration has chosen CERN ROOT [2] TFile and TTrees as the physical
format for data storage and processing2. The format is well-known and widely adopted in the
high-rnergy physics community, which requires very fast i/o for very large quantities of data. In our
case, the choice was mainly based on:

• convenience of serialising the data of the type gathered in GRAND;

• fast output to storage and fast random access during analysis;

• good responsiveness and support from the developers of the format;

• Python bindings as the built-in part of the data-format framework;

• long lifetime expectancy of the data-format framework.

Leading contenders were FITS [3], HDF5 [4] and Apache Parquet [5], which did not fill the
above requirements to a large enough degree3. The ROOT TTrees are not perfect though. The
“entry” structure (usually corresponding to data from a single event or an entire experimental run)
in a TTree is fixed for the whole TTree, which is a limitation. Still, on the other hand, this helps
to avoid attaching random information at random points throughout the data, resulting in very
fast random access times. Another issue is the lack of optimisation of the format for the readout
of multidimensional structures, such as 3D C++ Standard Template Library (STL) vectors. In
GRAND, we use 3D vectors for storing time traces of an event with DUs count × antenna arm
× time bin dimensions, where the first and last dimensions are not fixed. ROOT TTrees enforce
reading out the whole 3D vector at once, which, however, is expected to be the most common readout
case in the data analysis. Finally, the ROOT Python bindings to TTrees follow C++ philosophy and
are quite unintuitive to Python users (see sec. 4).

2The raw data coming directly from hardware and simulations will also be retained, at least for some, not yet specified,
time.

3This may change in the future for Apache Parquet, but it remains to be seen how well this wide-application format
will suit Astroparticle Physics community in the long run.
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3.2 The data structure

Our data structure is divided along three axes:

1. The variability of data: parts constant through the whole run such as detector settings, and
parts varying with each event, such as traces

2. The type of data: ADC counts, voltage or electric field measurements, whole EAS informa-
tion, etc.

3. The source of the data: common for both hardware and simulators or simulator only

These axes are reflected in the name of each TTree type. TTrees named with the TRun* pattern
(where "*" is an alphanumeric wildcard) contain information that remains constant for the whole
run, each entry corresponding to a separate run, while in T*(without “Run”) each entry corresponds
to a separate event. T*ADC, T*RawVoltage, T*Voltage, T*Efield and T*Shower correspond to
information about ADC counts, the voltage measured at the antenna foot, the voltage at the antenna
arms, electric fields at the antenna arms and EAS parameters, respectively. T*Sim trees contain
information produced only by simulators, while T*(without “Sim”) are based on information coming
from hardware, which to a large extent can also be obtained from simulators (with unavailable fields
left empty).

The full list of TTrees, which may be extended in the future, is as follows: TRun, TRunVoltage,
TRunEfieldSim, TRunShowerSim, TRunNoise, TADC, TRawVoltage, TVoltage, TEfield, TShower,
TShowerSim.

These TTree types do not represent all the combinations of the data structure division axes
mentioned above since not all the combinations would hold data.

The standard chain of analysis for the hardware data is: hardware binary blob→ TRun + TADC
+ TRawVoltage + TRunVoltage + TVoltage → TEfield → TShower. The raw (at the foot of the
antenna) and final (at the antenna arms) voltages can be obtained from ADC counts at the moment
of the conversion of the hardware binary blob with very simple operations. Reconstructing electric
field traces stored in TEfield is more complex, with several possible methods and would be done at
a later stage of analysis with a separate tool. Finally, the EAS parameters reconstruction can also be
done with different methods and stored in TShower at the final analysis stage. The hardware binary
blob is currently being converted to ROOT format using a GtoT (GRAND-to-Trees) program in
C++ for fast i/o of vast numbers of events provided simultaneously. Consecutive steps are expected
(but not enforced) to be done in Python because the number of events involved will be much smaller
at these stages.

The standard chain of analysis for the simulators data is: raw simulator data → TRun + TEfield
+ TShower + TRunEfieldSim + TRunShowerSim + TShowerSim → TVoltage + TRunVoltage
(optionally: → TRawVoltage + TADC) → TEfield → TShower. The first step is just simple storage
of simulator data in ROOT format. The conversion to voltage requires convolution with the antenna
response to get TVoltage, and then deconvolving it (which is not a simple reversal of the convolution
due to the addition of random noise) to get the reconstructed TEfield. Finally, the reconstructed
EAS parameters based on the reconstructed electric field are stored in TShower. It is important to
remember that the TTree names given here are the names of the types of trees, not their physical
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instances. Thus, in the simulation chain, there will be two TTrees of type TEfield and two TTrees of
type TShower, with precisely the same structure but different content: simulated and reconstructed
information. Also, in case of additional processing (for example, smoothing of traces), the resulting
data will be stored in a different instance of the same type of tree, with proper information about
the processing level and procedure in the metadata. TRunEfieldSim and TRunShowerSim hold
simulator-only information constant throughout the simulation run, such as refractivity model or
cuts on energies of specific particles. In contrast, TShowerSim holds simulator-only information
varying with each event, such as energy and density profiles of different particle types in the EAS.

At the moment of writing this article, it has not been decided what will be the physical
distribution of the TTrees to TFiles (corresponding to a physical file on storage). We will create at
least a separate file for each data processing stage, but the distribution inside a processing stage is
still being discussed.

4. Data-oriented interface

The data-oriented interface (DOI) to our data serves the purpose of fast i/o of our data stored in
TTrees but in a Pythonic way, not provided by PyROOT (ROOT to Python bindings). ROOT TTrees,
written in C++, assume that TTrees read and write to constant places in memory, which are given as
pointers with fixed types specified by the user. In Python, pointers, references and data placement in
memory are more abstract concepts. PyROOT interface to TTrees had to work around this fact by,
for example, using the first value of an array (from the Array or NumPy libraries) as a placeholder
for a scalar value. Using arrays to hold scalar values is far from intuitive and convenient. DOI
contains the set of Python classes with names mentioned earlier, allowing using the dot operator
(tree_name.variable_name scheme) to get and set the values inside the TTree, regardless of the
variable type. The TTrees are data containers with additional functionality. Therefore, our classes
are Python data classes encapsulating the ROOT TTree.

ROOT TTrees can hold only C/C++ types and classes, and in our case, we hold only simple
C types, STL vectors and strings. To use Python scalars, lists and arrays with TTrees, we have
initially created three wrapper classes. TTreeScalar accepts and outputs a Python scalar variable
but internally holds it as a 1-element NumPy array that keeps the constant address in memory
used by the ROOT TTree for input and output. StdString accepts and outputs Python string but
internally holds it as an STL string. Finally, the StdVectorList accepts Python lists, NumPy arrays
and PyROOT bindings to STL vector, internally holds an STL vector of a specific type, and outputs
a Python list. The standard use of a Python dataclass, where the variable is initialised to one of the
above types, would not work with TTrees and the tree_name.variable_name use scheme, as we need
to tell Python to copy the assigned value(s) to a specific place in memory. This can be obtained
with getters and setters of the class members, which call a specified function when an assignment
operator is used. In our case, they put/read values from a specific place in memory.

However, in our case, using getters and setters leads to a very big code base, where most
of the code consists of the same functions, with only the variable name and type replaced. To
avoid this issue, we explicitly use custom Python descriptors (as dataclass descriptor-typed fields).
Descriptors allow for creating objects with custom behaviour during assignments and readouts.
The whole wrapper-class functionality can be coded in the descriptor class, which was done for the

5



P
o
S
(
I
C
R
C
2
0
2
3
)
3
3
2

The format for GRAND data storage and related Python interfaces Lech Wiktor Piotrowski

simple case of a scalar. However, in the case of StdVectorList, we retain the original wrapper class
and use it inside the StdVectorListDesc, to increase readability.

The final outcome is Python classes, which can be used with simple tree_name.variable_name
assignment and readout scheme with Python variable types, coded as dataclasses without getters
and setters, that store and read values from ROOT TTrees. The classes are also iterators over events.
In addition, DOI contains DataFile and DataDirectory classes that allow for opening and scanning
through a single file/directory, automatic analysis of their contents, gathering essential information
and opening of the trees.

5. Analysis-oriented interface

The physical data structure and distribution are of little importance to many researchers not
involved in data processing, but focusing on, for example, EAS reconstruction. For their conve-
nience, we have prepared a set of classes forming the analysis-oriented interface (AOI), which by
default automatically loads the most relevant data into an Event class from appropriate sources
and distributes and writes analysis results stored in this class into appropriate physical trees, in
appropriate physical files. In a manner of speaking, AOI is an analysis-friendly interface to DOI.

The main parts of the Event class are the list of antennas, the list of voltage and electric
field traces (for each antenna), the parameters of a simulated shower and the parameters of the
reconstructed shower. The data are filled if they are available in the source files. The contents of
the Event class are very similar to the tree classes described above. However, they are structured
differently, including only the crucial information sub-set, extended by some variables calculated
on the fly. For example, the Voltage class encapsulates a Timetrace3D containing voltage traces,
adding information on whether the trace was triggered. Similarly, Efield class encapsulates the
Timetrace3D instance corresponding to the simulated or reconstructed electric field trace at the
antenna location, adding information about the field polarization angle and geomagnetic to charge
excess contribution ratio. The core part of the Timetrace3D class is an array containing value × time
bin for each antenna arm. While often filled with the values coming from hardware (and processing
that followed), the vector type is our internal GRANDlib CartesianRepresentation class based on
NumPy ndarray. Among other operations, it allows for easy transformations between coordinate
systems – a feature crucial for some analysis steps. The Timetrace3D class also contains some
other information, for example, the time position of each bin, which is “live”-computed from the
stored trace start time and time-bin length, as it is not included in the stored data, due to file size
constraints.

The Shower class contains a sub-set of the TShower information for a specific event, but,
similarly to Timetrace3D, it puts information such as the Xmax position, direction of the EAS
origin and position of the EAS core on the ground into CartesianRepresentation classes for ease
of transformations. Similarly, the Antenna class contains the positions and tilts from the vertical
orientation of each antenna as CartesianRepresentations, while at the same time adding a link to
the used AntennaModel, containing the antennas’ effective length, not included in the TTrees. The
user can iterate through a list of events using the EventList class.
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6. Summary

The structure of the data of the main measurements stored in the GRAND experiment reflects
the division into common and simulator-only data, type of data (ADC counts, voltage, electric field,
etc.), and variability of data (constant for the whole run or changing with each event). The CERN
ROOT TTrees and TFiles classes were chosen as the base for the data format, mainly due to their
fast sequential and random i/o access, the convenience of use with “Event-structured” data, the
responsiveness of the developers and likeliness of future existence and support. The described data
format is already used for the storage and processing of the experimental data from the prototypes
and simulated data coming from CoREAS [6] and ZHAireS [7] simulators. The development of
data processing and analysis tools has been significantly simplified with our Data-Oriented Interface
that grants standard Pythonic access to our TTrees, which is not provided by the ROOT framework.
Finally, the Analysis-Oriented Interface was designed to simplify the late stages of data analysis.
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