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The IceCube Neutrino Observatory, along with its surface array IceTop, is a unique instrument
for identifying the elemental composition of cosmic rays around the transition region between
Galactic and extragalactic origin of cosmic rays. It can thus provide valuable insights into
identifying astrophysical sources of high-energy particles. This work reports the preliminary
cosmic-ray composition estimate for air showers detected in IceCube. The analysis is performed
by an integrated use of a graph neural network (GNN) based approach, along with reconstructed
air-shower features. The GNN uses the detector-hits of air showers recorded at IceTop and IceCube,
mapped as a graph. The reconstructed features capture multiple aspects of air-shower physics.
The implementation of the GNN based approach also provides the flexibility and facilitates the
potential incorporation of planned detector extensions in the future.
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1. Introduction

Cosmic Rays (CRs) are a useful probe to understand astrophysical sources. The IceCube Neutrino
Observatory, a cubic-kilometer observatory located close to the geographical South Pole, is well suited
to study CRs in the transition range between their Galactic and extragalactic origin. In the coincident
operation of IceTop (surface component) and IceCube (in-ice component), the observatory serves as a
unique three-dimensional detector. In coincident operation, the observatory provides the ability to detect
the electromagnetic and GeV as well as TeV muon content of CR-initiated extensive air showers (EASs).
This enables detailed CR composition analysis at the IceCube Observatory. A study into the elemental
composition of CRs can pave the way to identify their sources, and to improve our understanding of
the propagation mechanisms as well as the source dynamics that can accelerate the nuclei to extreme
energies.

This work presents the result of CR composition estimation obtained from the analysis of CR-
initiated EAS, detected with IceTop and IceCube. In coincident operation, the observatory is sensitive
to CRs with energy between ≈ 1 PeV to ≈ 1 EeV. For composition estimation this work leverages a
hybrid approach of utilizing a Graph Neural Network (GNN) to learn hidden correlations in the shower
footprint, along with using multiple air-shower observables to capture high-level EAS information. The
work presented here utilizes Monte-Carlo (MC) simulations of EASs using CORSIKA [1], in the energy
range: 5.0 ⩽ log10(E/GeV) ⩽ 9.0. FLUKA [2] is used as the low-energy hadronic interaction model,
while SIBYLL 2.1 [3] is the high-energy hadronic interaction model. In order to test the validity of the
method and to estimate composition, a burnsample (10% of data measured in 2012) is used. Because
of limited statistics in the burnsample, the results are presented up to an energy of log10(E/GeV) ⩽ 8.0.
The work is an update and improvement of results presented in Ref. [4], and uses the same quality cuts.

2. Composition-Sensitive Observables : Using TeV Muons

Currently at IceCube we can use multiple EAS observables to understand and estimate CR com-
position. The current work uses the following high-level EAS observables or "Physics Features":

• log10(𝑆125): 𝑆125 is the signal expectation at a perpendicular distance of 125 m from the shower
axis at IceTop. It is expressed in units of Vertical Equivalent Muons, or “VEM”, which corre-
sponds to the signal deposited by a single muon traversing vertically through an entire IceTop
tank. log10(𝑆125) is known to be a reliable energy proxy [5].

• Air shower Zenith and Azimuth: Reconstructed using charge and timing information from IceTop
hits.

• log10(𝑑𝐸/𝑑𝑋1500): 𝑑𝐸/𝑑𝑋1500 is the fit value of energy-loss profile at a slant depth of 1500 m in
IceCube (details later in this section and in [5]).

• Total Stochastic Energy: Total energy-loss by high-energy stochastic deposits in IceCube (details
in [6]).

• Ratio Parameter: Ratio of log10(𝑑𝐸/𝑑𝑋1500) to linear-function of log10(𝑆125).
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Figure 1: Composition sensitivity of 𝑑𝐸/𝑑𝑋1500 (Left) and 𝑅mean (Right) as a function of shower size, 𝑆125,
using SIBYLL 2.1 [3] as the hadronic model and weighted using H4a [10] as the flux-model. The underlying
distribution and fits of the parameter for 1 < log10 (𝑆125/VEM) ⩽ 1.1 are also depicted in each inset-plot.
The distribution from data (10 % of 2012) measured at IceCube is also depicted.

• Mean Radius and Mean Charge: Average lateral spread i.e. Mean Radius (𝑅mean) is defined as
the mean orthogonal separation of all IceCube hits from the reconstructed track, which are within
a maximum distance of 200 m from the reconstructed track. The Mean Charge is defined as the
average value of the charge deposits, using the same hits which are used to evaluate 𝑅mean(details
later in this section and in [7]).

The separation power to distinguish between primary mass types varies amongst these EAS observ-
ables; in § 3 they will be used together to estimate primary mass using machine learning. This work
will elaborate upon the mass sensitivity and separation power of two of these observables, namely
log10(𝑑𝐸/𝑑𝑋1500) and 𝑅mean. These two observables are related to the multiplicity of TeV muons and
their lateral distribution, respectively.

The muon multiplicity in an EAS is considered to be a major observable for composition estimation
[8, 9]. The multiplicity of high-energy EAS muons detected with IceCube was found to be correlated
with log10(𝑑𝐸/𝑑𝑋1500) [5]. Hence, we can expect mass sensitivity from this observable. Figure 1
(left) presents the value of log10(𝑑𝐸/𝑑𝑋1500), as a function of shower size log10(𝑆125). As expected,
𝑑𝐸/𝑑𝑋1500 demonstrates a good separation among primary types throughout the full range of energy
showcased. Figure 1 (left) also depicts the mean values from the burnsample of data. The burnsample
is well bounded between the extreme instances of primary types present in CRs. This, and the effective
mass separation capabilities, makes log10(𝑑𝐸/𝑑𝑋1500) a suitable parameter for composition analysis.

At the same energy, iron-initiated EAS are expected to have a wider lateral spread of TeV muons
than proton-initiated EAS. This is expected since iron nuclei generally interact earlier in the atmosphere
than proton and have a higher muon multiplicity in the considered energy range. This leads to a greater
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Figure 2: GNN-based architecture utilizing detector hits at IceTop and IceCube ("Input Graph") and EAS
observables ("Physics Features"). Further details of the network architecture are provided in [4] and [7].

expectation of muons with larger transverse momenta positioned farther from the shower axis for iron-
initiated EAS than proton ones. A measure potentially sensitive to this effect, 𝑅mean is evaluated.
The mass sensitivity of 𝑅mean is depicted in Figure 1 (right). Similarly to 𝑑𝐸/𝑑𝑋1500, it is a mass
sensitive parameter, and the burnsample data is well contained within expectations from simulations.
The separation power of 𝑑𝐸/𝑑𝑋1500 is however much better than 𝑅mean. Improving the separation
capabilities of 𝑅mean is an ongoing effort.

3. Characterizing Composition : Using Graph Neural Networks

The mass sensitive "Physics Features" listed earlier primarily depend on the deposit of the TeV
muons in IceCube. In order to learn more hidden correlation in the shower footprint not captured by the
earlier listed observables and improve the primary-type separation capabilities of the analysis, a GNN
based approach is utilized to predict a mass proxy (logarithmic mass i.e. ln(A)) for each event.

The architecture of the GNN is shown in Figure 2 and the details of the architecture are provided
in [4] and [7]. As a brief summary, the network uses each coincident event, mapped as a graph, as an
input for the GNN, labelled "Input Graph" in Figure 2. The hit tanks at IceTop, along with hit DOMs in
IceCube, are mapped as nodes of the graph. In order to capture the details of the deposits in the detector,
each node has attributes which capture the spatio-temporal and charge hit information in each event. In
order to define the node neighborhood (or edges) at each node, the 𝑘-nearest neighbor (kNN) algorithm
is utilized. Each node is connected to its 𝑘 nearest neighbors spatially. The exact value of 𝑘 for each
event is based on event size (number of hits) and Ratio Parameter; the formula governing it is presented
in [4], with details in [7]. The choice of the architecture as well as the edge-construction allows for a
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Figure 3: Bias (upper) and resolution (lower) of energy prediction, as a function of reconstructed energy for
an equal mixture of all primary types and individual primaries. The energy prediction is obtained using a
GBDT, trained on high-level air shower observables.

data efficient training of the network, while also providing improved composition discrimination among
the primaries. In order to also benefit from the "Physics Features" listed earlier, the GNN architecture
combines them with the global representation learned from each event mapped as a graph. The GNN
architecture is trained on an equal mixture of MC simulations of the four primary types (proton = p,
Helium = He, Oxygen = O and Iron = Fe). The GNN architecture is trained to predict ln(A) as a mass
proxy for each event.

The performance of the GNN architecture is found to be more robust when trained using only a
single target variable rather than two (such as mass and energy). Hence, to estimate the primary energy
of the events: a Gradient-Boosted Decision Tree (GBDT) is utilized. Several physics features were
tested as inputs to the GBDT, and what was found to be most effective was to use all of the GNN’s
"Physics Features" except for Mean Charge. The bias and resolution of energy prediction on the test
dataset (a dataset not used during any procedure of training) are shown in Figure 3. Minimal energy
bias and improving resolution with increasing energy, are observed.

With a mass proxy obtained from the GNN, and an energy reconstruction from the GBDT, the last
step is to determine the fractional contribution of each primary type, using a Template-Fitting approach
similar to the previous composition measurement using IceTop and IceCube [5]. Adaptive Kernel
Density Estimate (KDE) using the improved Sheather-Jones algorithm [11], is applied to generate
templates from different primary types. This process utilizes Monte Carlo simulations from the test
dataset. The Template Fitting method can be expressed as finding solutions for:

Data = 𝑁𝑝 · KDE𝑝 + 𝑁𝐻𝑒 · KDE𝐻𝑒 + 𝑁𝑂 · KDE𝑂 + 𝑁𝐹𝑒 · KDE𝐹𝑒, (1)

where Data represents the burnsample distribution in a reconstructed energy bin. KDE𝑝/𝐻𝑒/𝑂/𝐹𝑒 are the
template KDEs obtained using the MC simulations. 𝑁𝑝/𝐻𝑒/𝑂/𝐹𝑒 are the free parameters of the extended
likelihood-maximization procedure performed to obtain the reconstructed number of events for each
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Figure 4: Mean-mass expectation from this work using 10% of data from 2012 as a function of recon-
structed energy, obtained using ln(A) predictions from GNN followed by Template Fitting procedure. The
dashed/dotted lines represent a choice of flux-models among GST 3-gen [13], H3a/H4a [10] and GSF [14].
No systematics are included.

primary type, using Iminuit [12]. The contributions are then used to estimate Mean logarithmic-mass
(i.e. ⟨ln(𝐴)⟩) as a function of reconstructed energy, given by:

⟨ln(𝐴)⟩ = 𝑓𝑝 · ln(𝐴𝑝) + 𝑓𝐻𝑒 · ln(𝐴𝐻𝑒) + 𝑓𝑂 · ln(𝐴𝑂) + 𝑓𝐹𝑒 · ln(𝐴𝐹𝑒). (2)

𝑓𝛼 = 𝑁𝛼/(𝑁𝑝 +𝑁𝐻𝑒 +𝑁𝑂 +𝑁𝐹𝑒) is the fractional contribution from primary type 𝛼 (= p/He/O/Fe) with
logarithmic mass ln(𝐴𝛼). Here ln(𝐴𝑝) = 0.007, ln(𝐴𝐻𝑒) = 1.386, ln(𝐴𝑂) = 2.772 and ln(𝐴𝐻𝑒) =

4.022. ⟨ln(𝐴)⟩ obtained from the burnsample is shown in Figure 4. With an increase in energy, the
composition shows a transition from a lighter to heavier composition, and is generally compatible with
most flux models, for the choice of SIBYLL 2.1 as the hadronic interaction model.

4. Consistency Test

To verify the internal consistency of the derived primary-type fractions and thereby ⟨ln(𝐴)⟩ dis-
cussed in §3, a compatibility test is performed. This involves weighting the simulation KDE distributions
of the EAS observables mentioned in §2, with fractions obtained from §3 and comparing them with
the corresponding EAS observable distributions from the burnsample. The test for log10(𝑑𝐸/𝑑𝑋1500)
and 𝑅mean is depicted in Figure 5. Generally, a good overlap, for all energy bins, between weighted
MC simulation expectation and the burnsample for the two shower observables is seen. It is however
important to notice that the overlap is better for 𝑅mean, than log10(𝑑𝐸/𝑑𝑋1500).
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(a) Consistency test for log10 (𝑑𝐸/𝑑𝑋1500).

(b) Consistency test for Mean Radius.

Figure 5: Consistency test of composition fractions obtained in this work with distribution from burnsample,
in different energy bins. The Top-panel (a) depicts the consistency for log10 (𝑑𝐸/𝑑𝑋1500) and the Bottom-
panel (b) for Mean Radius. The magenta-band represents the uncertainty on the weighted MC distribution,
obtained by propagating error obtained on the primary type fractions.
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5. Conclusions and Outlook

This work presented the Mean logarithmic-mass expectation using a burnsample (10% of data
measured in 2012), in a coincident operation of IceTop and IceCube. The work used a hybrid approach
utilizing multiple EAS observables along with the detector hits, in a GNN-based approach. Analyzed
using SIBYLL 2.1, the CR composition indicates a transition from a lighter to heavier composition from
6.4 < log10(𝐸Reco/GeV) ⩽ 8.0, and in general a good overlap with GST 3-gen [13] and H3a/H4a [10]
flux models. A consistency check for the composition expectation indicates a good general agreement
between the simulated distributions and with the measurements from burnsample. However, we do see
a very slight tension in overlap between the two different EAS observables. We note that a similar
composition study has been performed in previous work [5]. Both analyses employ 𝑑𝐸/𝑑𝑋1500, but
this work uses different and additional inputs for the GNN (not only physics parameters but also IceTop
and IceCube hits). The differences between the two analyses can help illuminate inconsistencies in
the simulation of EASs. Detailed systematic tests using different hadronic interaction models, detector
systematics, and with a dataset larger than the burnsample are required to make a stronger statement/
resolve the tensions seen here.

The analysis also has the possibility to be improved further in the future, by utilizing information
from the planned surface enhancement involving scintillation detectors and radio antennas. Augmenting
this analysis using measurements from the planned IceCube-Upgrade and the next generation obser-
vatory IceCube-Gen2 has the potential to improve the analysis and help extend it beyond the sensitive
energy range of the current observatory.
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