Comparison of the atmospheric muon flux measured by the KM3NeT detectors with the CORSIKA simulation using the Global Spline Fit model

Andrey Romanova,b,* and Piotr Kalaczynskic,d on behalf of the KM3NeT Collaboration

aDipartimento di Fisica dell’Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
bINFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
cNational Centre for Nuclear Research, 02-093 Warsaw, Poland
dNicolaus Copernicus Astronomical Center Polish Academy of Sciences, Particle Astrophysics Science and Technology Centre, Rektorska 4, Warsaw, 00-614 Poland

E-mail: aromanov@ge.infn.it, pkalaczynski@camk.edu.pl

Atmospheric muons are the dominant component of the down-going events for the KM3NeT neutrino telescopes. Deep underwater measurements of muons provide important information about the cosmic ray properties. The KM3NeT research infrastructure includes two telescopes currently in operation while still being under construction in the Mediterranean Sea. The KM3NeT/ORCA detector is deployed at 2450 m depth near Toulon, France. The KM3NeT/ARCA telescope is located at 3500 m depth off-shore Capo Passero, Italy. In this work, the measured atmospheric muon flux is compared to the Monte Carlo simulation using the CORSIKA package with the Sibyll 2.3d model for high-energy hadronic interactions and the GSF model for mass composition. The data from both KM3NeT/ORCA and KM3NeT/ARCA telescopes are considered for this analysis. In the current configuration, KM3NeT/ORCA covers cosmic ray energy range from several TeV up to hundreds of TeV per nucleon, while for KM3NeT/ARCA the range is from several TeV up to PeV per nucleon. Systematic uncertainties considered for the analysis include that on the cosmic ray flux normalization and its composition, water properties, detector response, and high-energy hadronic interaction models.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

*Speaker
1. Introduction

The KM3NeT research infrastructure comprises two neutrino telescopes at the bottom of the Mediterranean Sea [1]. The KM3NeT/ARCA telescope is being constructed off-shore the coast of Sicily, Italy, at a depth of \(\sim 3.5 \) km. Its primary scientific aim is to study High-Energy (HE) cosmic neutrinos in the TeV-PeV range. The KM3NeT/ORCA detector has a smaller and denser configuration with respect to KM3NeT/ARCA since its primary goal is to investigate atmospheric neutrino oscillations and neutrino mass hierarchy which requires a lower energy threshold (GeV) for neutrino detection. The telescope is located around 40 km away from Toulon, off the coast of France, at \(\sim 2.5 \) km depth. An array of 115 lines is called a building block. The final configuration of the KM3NeT/ARCA telescope will comprise two building blocks and KM3NeT/ORCA will consist of one such block. The one building block configuration is called ARCA115 and ORCA115 in the following. The analysis presented in this work was performed with data taken by the KM3NeT/ARCA and KM3NeT/ORCA telescopes with six working lines each. In the following, those configurations are denoted as ARCA6 and ORCA6.

This contribution aims to compare the atmospheric muon flux measured by ARCA6 and ORCA6 detectors to the MC simulation performed with the CORSIKA package [2] that includes the Sibyll 2.3d model [3] for description of HE hadronic interactions and the Global Spline Fit (GSF) [4] as model of the mass composition of Cosmic Ray (CR) flux.

2. Simulation of atmospheric muons in KM3NeT

The simulation of atmospheric muons for the KM3NeT experiment starts in the upper layers of the atmosphere and ends deep underwater. The first step is to simulate the interactions of the primary CRs with the air nuclei and the subsequent Extensive Air Shower (EAS) development. This step is performed with the CORSIKA [2] v.7.741 package.

The minimum muon energy required to reach the top part of the KM3NeT/ORCA detector (\(\sim 2 \) km) is around 500 GeV [5]. Hence, the lower limit on the primary energy was set to 1 TeV per nucleon in the simulation. Five nuclei were used as primaries in the simulation: proton, helium, carbon, oxygen, and iron. Other primaries were taken into account by enlarging the flux weights of C, O, and Fe according to the flux of nuclei missing in the simulation. The CR mass composition model that was used in this work is GSF [4].

The plots in Fig. 1 show the sea level flux of muon bundles that reach ORCA6 and ARCA6 detectors as a function of the bundle energy. The muon bundle energy is the sum of muon energies at sea level originating from one shower for those muons that reach the detector. The highlighted area indicates the 90% fraction of events counting from the maximum of the distribution. The energy range of the fraction spans from 0.8 TeV to 10 TeV for ORCA6 and from 1.1 TeV to 34 TeV for ARCA6. The upper limit arises due to the fast decrease of the CR flux with energy.

Therefore, the sea level energy of muons detectable by the KM3NeT experiment lays in the TeV range. This muon energy is about 3 orders of magnitude higher than for the muons detected in EAS experiments. Thus, the KM3NeT measurement is complementary to the investigations of the so-called muon puzzle [6], i.e. deficit of GeV muons detected at the ground.
Underwater muon flux from the KM3NeT data and MC simulation

Andrey Romanov

Figure 1: Sea level rate of generated muon bundles that reach the depth of the KM3NeT telescopes as a function of bundle energy. The left (right) plot shows the range for ORCA6 (ARCA6) detector.

The HE hadronic interaction model used in the simulation is Sibyll 2.3d [3]. Differences in the HE muon flux induced by choosing the different HE hadronic interaction models are treated as systematic uncertainties.

Fig. 2 shows pseudorapidity of muons reaching ORCA6 and ARCA6 detectors. The pseudorapidity is defined as \(\eta = -\ln(\tan(\theta/2)) \), where \(\theta \) is the angle between the primary particle and secondary muon at sea level. The peak of the distributions is located at \(\eta \approx 9 \). Therefore, muons seen by KM3NeT detectors originate from hadronic interactions laying in the very forward region of pseudorapidities. This region is not fully covered by accelerator experiments [6]. Hence, the hadronic interaction models that aim to describe the CR interactions that are seen by the KM3NeT detectors rely necessarily on the extrapolations of experimental results.

Figure 2: Pseudorapidity distribution of muons reaching ORCA6 (left plot) and ARCA6 (right plot) detectors. The highlighted area shows the energy range that includes a 90% fraction of events.

The propagation of muons in water down to the KM3NeT detectors is performed with the gSeaGen code [8] using PROPOSAL [9] as a muon propagator.

Simulation of the Cherenkov radiation induced by muons, its detection by the optical modules, and the muon track reconstruction is performed with the internal KM3NeT software.

The top part of Fig. 3 shows the rate of reconstructed events counted at ORCA6 and ARCA6 detectors as a function of the true primary nucleus energy. 90% fraction of the total number of events...
events corresponds to the energy range from 3 to 316 TeV for ORCA6 and from 5 TeV to 1.3 PeV for ARCA6. The same distributions when considering ORCA115 and ARCA115 telescopes are presented in the bottom part of Fig. 3. The energy ranges for these detector configurations are 3 TeV - 250 TeV for ORCA115 and 6 TeV - 1 PeV for ARCA115. For both detectors, the events mostly originate from p and He primaries.

Figure 3: Rate of reconstructed atmospheric muon events expected with ORCA6 (top left plot), ARCA6 (top right plot), ORCA115 (bottom left plot), and ARCA115 (bottom right plot) detectors as a function of the primary energy. The total rate is shown in blue, the rates from p, He, C, O, and Fe primaries are shown as red, yellow, light green, dark green, and purple points, correspondingly.

3. MUPAGE tuning on CORSIKA

CORSIKA provides atmospheric muons at sea level, which can be propagated till the detector, performing the full MC simulation of EAS development through the atmosphere. The main drawback of this approach is high CPU time.

To reduce CPU time requirement, the simulation of atmospheric muons in KM3NeT is based on the fast MC generator MUPAGE [10]. It generates the muon bundle kinematics features at a certain sea depth and zenith angle based on parametric formulas. The formulas describe the flux of the single- and multi-muon bundles, the differential energy spectrum, and the lateral distance of muons from the bundle axis. Values of the parameters [11] were obtained starting from a full MC simulation performed with the HEMAS package [12] and fitting the results to MACRO [13] measurements.
With the aim of merging the advantage of a quick parameterized simulation and the details coming from the CORSIKA full simulation associated to the most recent physics models, both for hadronic interaction description (Sibyll 2.3d [3]) and for mass composition (GSF [4]), a framework was developed to adjust the MUPAGE parameters in order to reproduce CORSIKA expectations. The MUPAGE code and the parametric formulas themselves were not modified. Fig. 4 shows the muon zenith flux distributions expected with ORCA6 and ARCA6 detectors resulting from the CORSIKA full simulation and from MUPAGE with the nominal parametrization and with the modified MUPAGE tuned on CORSIKA. The distributions obtained with the tuned MUPAGE agree with what obtained with CORSIKA full MC within statistical fluctuations for both ORCA6 and ARCA6 detectors. Hence, the tuned MUPAGE can be used as a fast proxy of CORSIKA in order to obtain results that are similar to simulations with CORSIKA + Syll 2.3d and GSF models.

Figure 4: Rate of reconstructed atmospheric muons for ORCA6 (left plot) and ARCA6 (right plot) detectors as a function of the zenith angle. The blue (red) points represent the CORSIKA simulation. The nominal MUPAGE is shown as green points and the MUPAGE tuned on CORSIKA is shown in red. The ratios between MUPAGE and CORSIKA are on the bottom plots.

4. Reconstruction of muon arrival direction

To evaluate the direction reconstruction capabilities, the true and the reconstructed muon zenith angles, θ, were used. The true zenith angle is the one of the muon bundle at the detector can, all muons are assumed to be collinear with the bundle axis in MUPAGE. The reconstructed angle is instead obtained with the KM3NeT reconstruction algorithm. In the left plot of Fig. 5, the MC true $\cos \theta$ distribution (blue points) is compared to the reconstructed one (red points) for ORCA6 detector. The discrepancy starts to emerge for events with $\cos \theta < 0.5$. The reason for this discrepancy is that the flux dependence on $\cos \theta$ is very steep and few well-reconstructed events at $\cos \theta < 0.5$ are dominated by a fraction of mis-reconstructed vertical muons. The KM3NeT angular resolution is at sub-degree level, so the fraction of mis-reconstructed events is small, however the number of vertical muons is several orders of magnitude higher. Hence, it was decided to consider only muons with $\cos \theta > 0.5$ for the final data/MC studies. The same plot but for ARCA6 telescope is shown in the right plot of Fig. 5. Muons with $\cos \theta > 0.6$ are considered well reconstructed.
5. Data and MC with systematics

Systematic errors considered in this work include uncertainties on CR flux, light absorption length in seawater, PMT quantum efficiency, and HE hadronic interaction model.

To estimate the uncertainty on the water absorption length and PMT efficiency, ±10% variations were assumed for both quantities. The uncertainty on CR flux is evaluated using the data provided in the GSF model. The HE hadronic interaction uncertainties are estimated using the post-LHC models available in the MCEq software [14].

The final result of this analysis is the comparison of KM3NeT data with MC simulation including all systematic uncertainties mentioned above. Data and MC comparison results together with associated uncertainties are shown in Fig. 6 for ORCA6 and ARCA6 detectors. The plots below are obtained with the quality cuts on the reconstruction applied in order to remove background (40K decays and bioluminescence).

The MC simulation underestimates data for both ORCA6 and ARCA6 detectors. The discrepancy for ORCA6 goes beyond the uncertainties considered in this work. The ratio between data and simulation is flat in the considered zenith angle range. There are ∼40% more muons in data with respect to simulation.

The shape of the ARCA6 data/MC ratio is not flat in contrast to the ORCA6 result. One of the possible explanations for the non-flat ARCA ratio and the mismatch in the ratio values between the detectors could be related to the detector response simulation uncertainties, and in particular, water properties.

Given a discrepancy between KM3NeT data and MC simulation for the muon zenith distribution underwater, it is important to investigate if it is also present for the sea level flux of HE muons. Fig. 7 shows the sea level muon flux resulting from the CORSIKA simulation, which used for the MUPAGE tuning, compared to the real data from the ground-based experiments and to the analytical models. The x-axis range of the figure covers the 99% fraction of single muon events detected by ORCA6 and ARCA6 telescopes. The data points shown in the figure are from the experiments mentioned in the overview paper [15] and from the L3+C experiment [16]. The analytical models
Underwater muon flux from the KM3NeT data and MC simulation

Andrey Romanov

Considered are by T. Gaisser [17] and E. V. Bugaev [18]. Also, the fit of the MACRO data was added to the plot [19].

In general, CORSIKA expectations underestimate the sea level muon flux with respect to considered models. The discrepancy is at a level of 30%. All data points except for two exceed the CORSIKA predictions by ~20-30%.

The discrepancy between data and simulation for the underwater muon flux seen by ORCA6 telescope is around 40% as shown above. That indirectly confirms that the KM3NeT simulation describes the muon propagation in water, the light generation, the detector response, and the muon reconstruction with a precision better than 10%. The 10% disagreement between the simulation and measurements at sea level and underwater may be explained with uncertainties on light attenuation length in seawater and detector response simulation, shown as green and purple bands in Fig. 6.
The sum of the two aforementioned upper uncertainties is around 10% for the ORCA6 telescope and 20-40% for the ARCA6 detector that covers the difference.

The models used in this analysis include the post-LHC hadronic interaction model Sybill 2.3d and the GSF CR flux model which was fitted on the most recent direct CR measurements. The models provide a ~40% deficit in TeV muons with respect to the KM3NeT data. We hope this additional measurement provides new insights and the test-bench for possible solutions to the muon puzzle.

This contribution is supported by IRAP AstroCeNT (MAB/2018/7) funded by FNP from ERDF.

References

Acknowledgements

The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Européenne (FEDER fund and Marie Curie Program), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-22-13708), Georgia; The General Secretariat of Research and Innovation (GSRI), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Università e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for Economic and Social Development, Kuwait; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2021/41/ST2/01177); The grant “AstroCeNT: Particle Astrophysics Science and Technology Centre”, carried out within the International Research Agendas programme of the Foundation for Polish Science financed by the European Union through the European Regional Development Fund, National Authority for Scientific Research (ANCS), Romania; Grants PID2021-124591NB-C41, -C42, -C43 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”, Programa de Planes Complementarios I+D+i (refs. ASFAE/2022/023, ASFAE/2022/014), Programa Prometeo (PROMETEO/2020/019) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049, /2021/23) of the Generalitat Valenciana, Junta de Andalucía (ref. SOMM17/6104/UGR, P18-FR-5057), EU; MSC program (ref. 101025085), Programa María Zambrano (Spanish Ministry of Universities, funded by the European Union, NextGenerationEU), Spain; The European Union’s Horizon 2020 Research and Innovation Programme (ChETEC-INFRA - Project no. 101008324).