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Extensive air showers are one of the most important phenomena to study in the context of ultrahigh-
energy cosmic rays. Their longitudinal development can be directly observed using fluorescence
detector telescopes, such as those employed at the Pierre Auger Observatory or the Telescope
Array. In this work, we discuss the properties of the Greisen function, originally introduced to
describe the longitudinal shower profiles of electromagnetic air showers, and demonstrate that,
after appropriate modification, it can be used to describe longitudinal air-shower profiles, even
for hadronic air showers. Furthermore we discuss the possibility to discriminate between hadrons
and photons from the shape of air-shower profiles using the Greisen function.
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1. Introduction

High-energy cosmic rays create cascades of secondary particles upon interaction with the
Earth’s atmosphere, which are known as extensive air showers [1, 2]. Particles created in extensive
air showers can be detected at the ground using surface detector arrays, but can also be observed using
fluorescence detector telescopes from the light they produce by excitation of nitrogen molecules
in the atmosphere. The characteristic curve of the development of emitted fluorescence light as
a function of the surpassed calorimetric matter, which directly follows the energy deposit in the
atmosphere, is known as the longitudinal shower profile. To reconstruct the shower profile and
related observables, a profile function needs to be fitted to the detector data. Gaisser and Hillas
proposed an empiric function [3] to describe the longitudinal development of proton air showers in
the context of the Constant Intensity Cut method [4, 5], which is used in surface detector experiments
to take into account the atmospheric attenuation of particles in air showers from different zenith
angles. Today, both the Pierre Auger Observatory and the Telescope Array use the Gaisser-Hillas
function to describe shower profiles from their fluorescence detector data [6, 7].

In this work, we present the Greisen function and its properties. We review the origin of
the function itself and introduce minor modifications to the Greisen function to make it a handy
function to fit shower profile data. We will demonstrate the usability of the Greisen function as an
alternative to the Gaisser-Hillas function to describe shower profiles and present its performance
to reconstruct the depth 𝑋max of the shower maximum as well as the primary energy using Monte
Carlo (MC) simulations of air showers.

2. The Greisen Function

More than 80 years ago, Rossi and Greisen derived functions to describe the average longitudi-
nal development of electromagnetic air showers [8]. This description holds in good approximation
also for hadronic showers, initiated by protons and heavier nuclei, which seem to make up the upper
end of the cosmic-ray energy spectrum [9]. Their solutions to the differential equations that describe
electromagnetic cascades were used to motivate important properties in the context of air-shower
physics, such as the shower age. The shower age parameter 𝑠 describes an electromagnetic shower,
initiated by a primary particle of the energy 𝐸0, after 𝑡 radiation lengths, considering only the
particles above an energy of 𝐸cut. It is given as

𝑠 =
3𝑡

𝑡 + 2𝛽
, (1)

with 𝛽 = ln(𝐸0/𝐸cut); the spectra of the electromagnetic particles in a shower approximately
follow a power-law distribution of the form ∼𝐸−(𝑠+1) . In general, 𝑠 = 0 at the beginning of the
shower cascade, 𝑠 = 1 at its maximum, and 𝑠 ≫ 1 once most particles have been attenuated. For
electromagnetic showers a reasonable choice for 𝐸cut is close to 87 MeV, which is the energy above
which electromagnetic particles on average lose more energy in radiative shower processes than to
scattering and ionization. To describe the number of particles 𝑁 above ≈100 MeV as a function of
𝑡, the Greisen function was introduced in [10] and reads as

𝑁 (𝑡) = 0.31
√
𝛽

exp
[
𝑡

(
1 − 3

2 ln 𝑠
)]
. (2)
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Figure 1: Sketch of the Greisen func-
tion evaluated for different primary ener-
gies. The top axis converts 𝑡 to atmo-
spheric depth using 𝑋/𝑡 = 37 g cm−2.
Red dashed lines represent regions of
equal shower age 𝑠 for different primary
energies.

A depiction of the behavior of the Greisen function is given in Fig. 1. A derivation of Eq. (2) is
given in [11].

To be able to use the Greisen function to describe shower profile data, we have to overcome two
major shortcomings of the function as written in Eq. (2). Firstly, the Greisen function in its classic
form cannot account for different points of the first interaction of the cascade, since by construction
the shower is initiated at 𝑡 = 0. Secondly, the scale of the Greisen function is only accurate for the
number of particles above ≈100 MeV in the average electromagnetic shower. We insert the point of
the first interaction as a free parameter, and we introduce a new parameter 𝜖 . We demonstrate that
the Greisen function generalized this way is able to describe the longitudinal profile of individual
electromagnetic and hadronic showers as well as the corresponding shower-to-shower fluctuations.

3. The Modified Greisen Function

We propose two intuitive modifications to the classical Greisen function, given in Eq. (2), to
make it able to describe the energy deposit as a function of the atmospheric depth of individual
electromagnetic and hadronic showers of cosmic rays at ultra-high energies. Firstly, we introduce
a non-zero point of the first interaction at a slanted atmospheric depth 𝑋1, that will be described by
𝑡1 = 𝑋1/𝑋0 using the radiation length1 𝑋0. Equivalently, we use 𝑡 = 𝑋/𝑋0 and 𝑡max = 𝑋max/𝑋0.
Thus, the shower age 𝑠 will be given as

𝑠 =
3𝑡′

𝑡′ + 2𝛽
Θ(𝑡′), (3)

with 𝑡′ = 𝑡 − 𝑡1, using the Heaviside function Θ. To maintain the property of the shower age, which
is supposed to be 1 at the maximum of the shower, and to keep number of radiation lengths required
to reach the maximum of the shower the same as before, we redefine 𝛽 in accordance with the
previous modification as

𝛽 = ln(𝐸0/𝐸cut) = 𝑡max − 𝑡1. (4)

Finally, to replace the constant 0.31 in Eq. (2), we introduce the factor 𝜖 , which is defined in units
of energy deposit per step length, and which can be interpreted as effective energy loss per particle
and step length at the shower maximum. Thus, the modified Greisen profile reads as

1For electromagnetic showers 𝑋0 corresponds to the electromagnetic radiation length in air of ≈37 g cm−2, for
hadronic showers 𝑋0 takes an effective value larger than the electromagnetic radiation length.

3



P
o
S
(
I
C
R
C
2
0
2
3
)
3
4
0

The Greisen function Maximilian Stadelmaier

6 8 10 12
lg(Ecut/eV)

−12

−10

−8

−6

−4

lg
( ε/

(
Pe

V
g

cm
−

2

))

0.968 lg(Ecut/eV)− 16.830
γ
p
Fe

Figure 2: Correlation of 𝜖 and 𝐸cut for simulated air showers [11].

d𝐸
d𝑋

(𝑡) ≡ 𝑁 (𝑡) = 𝜖
√
𝛽

exp
[
(𝑡 − 𝑡1)

(
1 − 3

2 ln 𝑠
)]

, (5)

with 𝑁 (𝑡) = 0 for 𝑡 ≤ 𝑡1. For the sake of simplicity, here and in the following, in the text we
abbreviate the energy deposit d𝐸/d𝑋 with the symbol 𝑁 , which was reserved for the number of
particles in Section 2.

4. Describing Shower-to-Shower Fluctuations and the Shape of the Profile

If Eq. (5) is used to describe shower profiles, one can calculate event-level values for 𝜖 and 𝐸cut
from the MC values of 𝑋max, 𝑋1, 𝑁 (𝑡max), and 𝐸0. From Eqs. (4) and (5) it is readily found that

𝜖 = 𝑁 (𝑡max)
√︁
𝛽 e−𝛽 (6)

and

𝐸cut = 𝐸0 e−𝛽 . (7)

To calculate 𝛽 for the MC shower profiles we use 𝑋0 = 40 g cm−2 as a reasonable compromise
for hadronic and electromagnetic showers. Note that because of the implicit dependence of both
𝛽 and the average 𝑁 (𝑡max) on the primary energy, the dependence of 𝜖 as well as of 𝐸cut on
𝐸0 cancels. In Fig. 2 we present the correlation observed between 𝜖 and 𝐸cut when examining
showers from photons, protons, and iron nuclei, at primary energies of 1018.5 eV, 1019.0 eV, and
1019.5 eV, simulated with the Sibyll2.3d [12] model of hadronic interactions. The simulations
were produced using the Conex [13] event generator at version v7.60. The examined simulation
library contains 1000 showers for each combination of primary particle and energy. We find an
almost perfect correlation of 𝜖 with the effective threshold energy 𝐸cut (see Eq. (4)). Thus we expect
mass composition sensitive behavior of 𝜖 . In the following, we will discuss how 𝜖 is related to the
shape and the type of the primary particle of individual shower profiles.

The dependence of the shape of the shower profiles on the type of the primary particles becomes
more obvious when the dependence on the primary energy and the shower-to-shower fluctuations
(i.e. differences in the profiles from showers, which were induced by the same primary at the
same energy) are partially removed. Integrating the Greisen function as given in Eq. (5) yields the
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Figure 3: Left: Simulated shower profiles with primary energies of 1018.5, eV, 1019 eV, and 1019.5 eV using
different primary particles. Shower-to-shower fluctuations are visible in addition to the increase of the profile
size depending on the primary energy. Right: The same profiles scaled and shifted; see the text for details.

calorimetric energy deposit of a shower profile, which for purely electromagnetic showers is very
close to the primary energy, 𝐸0. Numerically, we find that

∞∫
𝑋1

𝜖
√
𝛽

exp
[
(𝑋 − 𝑋1)/(𝑋0)

(
1 − 3

2 ln 𝑠
)]

d𝑋 ≃ 3.1 𝜖 e𝛽 𝑋0 (8)

is a good approximation for the integrated Greisen profile. Thus, normalizing the shower profile
using Eqs. (6) and (8) and shifting the ordinate of the profiles to use the shower maxima as a common
point of reference, Δ𝑋 = 𝑋 − 𝑋max, we can highlight subtle differences in the shower profiles for
the different primary particles, as can be seen in Fig. 3. On average, we expect a longer “tail” for
hadronic showers, as well as smaller values for 𝑋max − 𝑋1. Furthermore, the size of the maximum
of the Greisen function, 𝑁 (𝑡max) = 𝜖 e𝛽/

√
𝛽, is mainly governed by the factor e𝛽 , which depends on

𝑋1, 𝑋0, and 𝑋max. Hence 𝜖 , as a pre-factor, will compensate subtle changes in the shape. However,
as can be seen in Fig. 3 (right), the differences in the shape of the profiles for different primary
particles are subtle, consequently the mass composition sensitivity of 𝜖 will diminish for data from
low-energy showers that is subject to a lot of noise.

The behavior displayed in Figs. 2 and 3 using the Sibyll2.3d model of hadronic interactions
is also apparent for simulations using the Epos-lhc [14] or the QgsjetII-04 [15] model of hadronic
interactions. We find that shower-to-shower fluctuations, that manifest not only in different values
of 𝑋max, but also in differences in the shape of the profile, can be described by the modified Greisen
function.

The mass-composition sensitivity of the shape of shower profiles has been investigated already
using the Gaisser-Hillas function [16], especially in the context of a reparametrized version of the
Gaisser-Hillas function using “𝐿” and “𝑅”. The Greisen function, however, yields a promising
alternative because the shape can be elegantly described using only the parameter 𝜖 .

5. Fitting the Greisen Function to Simulated Data

To extract information about air shower profiles from detector data, a profile function needs to
be fitted to the reconstructed energy deposit as a function of the atmospheric depth. Most commonly
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Figure 4: Left: Simulated example pro-
files from (top to bottom) photon, proton,
and iron nucleus as primary particles. Both
the Greisen function (red) and the Gaisser-
Hillas function (orange, dashed) are fitted to
the profile data. The legend of each panel
displays the MC values of 𝑋max as well as
the best-fit parameters of the two functions
𝑓 to describe the shower profile data 𝑑. The
lower panel depicts the relative difference
𝛿 = ( 𝑓 − 𝑑)/𝑑 of the profile functions with
respect to the data. The “tails” of the pro-
files, which were disregarded for the fit, are
indicated as gray markers. Right: Distri-
butions of 𝜒2/ndf for the Greisen function
and Gaisser-Hillas function fitted to simu-
lated shower profiles with a primary energy
of 1019 eV for different primary particles.
The means of the distributions are indicated
by a vertical line.

this is done using the Gaisser-Hillas function [3],

d𝐸
d𝑋

= 𝑁max

(
𝑋 − 𝑋1

𝑋max − 𝑋1

) 𝑋max−𝑋1
Λ

exp
[
𝑋max − 𝑋

Λ

]
, (9)

but also different functions (e.g. a Gaussian) have been tested for this purpose in the past [17]. In
the following, we fit the Greisen function alongside the Gaisser-Hillas function to simulated ideal
shower profiles. The uncertainty for the individual data points was set at a constant value so that a
mix of shower profiles from protons and iron nuclei will result in 𝜒2/ndf ≃ 1 at a primary energy of
1019 eV for reference. Example fits of the two functions to simulated shower profiles with a primary
energy of 1019 eV are depicted in Fig. 4 alongside distributions of 𝜒2/ndf. From visual inspection
there is little to no difference in the best fit realizations of the Greisen and the Gaisser-Hillas function
using the same simulated data. However, the Greisen function yields a ≈10% improvement in the
average 𝜒2/ndf for hadronic showers.
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Figure 5: Top: Residuals of the MC and recovered values of 𝑋max (left) and 𝐸cal (right) using the Greisen
function. Bottom: The same data obtained using the Gaisser-Hillas function.
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Figure 6: Distributions of 𝜖 and 𝑋19
max as two-dimensional histograms.

The most interesting observables to extract from shower profile data are the depth of the
maximum, 𝑋max, and the calorimetric energy deposit2, 𝐸cal, from which the energy of the primary
can be estimated. We extract both from the best fit values of the Greisen and the Gaisser-Hillas
function fitted to the simulated shower profiles. The residuals of the recovered and true values are
depicted in Fig. 5 as a function of the MC values of 𝑋max. Both the Greisen and the Gaisser-Hillas
function provide an accurate result for the depth of the shower maximum. Furthermore, we observe
the same accuracy and precision when recovering 𝐸cal for both fitted profile functions. There is a
slight negative bias that increases with the amount of hadronization occurring in the shower and is
at approximately −2% for showers induced by iron nuclei.

Whilst the Greisen function on average shows a slightly better value for 𝜒2/ndf for all primary
particles, the performance to recover 𝑋max and 𝐸cal is identical to the Gaisser-Hillas function.
Additionally, in Fig. 6 we present the mass-composition sensitive parameters from the best-fit
values of the Greisen function parameters. As 𝑋max on its own is not mass-composition sensitive

2We calculate the MC calorimetric energy deposit from the sum of the simulated profile data, and the reconstructed
calorimetric energy from the profile function by numerical integration from 0 g cm−2 to 2000 g cm−2.
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without knowledge about the primary energy [18], we subtract a constant decadal elongation rate
and use 𝐸0 = 1019 eV as a reference, 𝑋19

max = 𝑋max − 58 g cm−2 lg(𝐸0/1019 eV). We observe only a
mild correlation of 𝜖 and 𝑋19

max for the individual primaries3 and thus consider the behavior depicted
in Fig. 6 not as artificial. Thus the mass-sensitivity of 𝜖 partially adds to the sensitivity of 𝑋max.

6. Summary and Conclusion

In this work we discuss the behavior of the well-known Greisen function, which was introduced
to describe average electromagnetic air-shower profiles. We suggest minor intuitive modifications,
with which the Greisen function is made able to describe individual showers from both electromag-
netic and hadronic primary particles. Furthermore, we discuss the mass-composition sensitivity
of the shape of shower profiles. We present the performance of the Greisen function to recover
the depth of the shower maximum as well as the calorimetric energy deposit when fitted to ideal
simulated shower profiles and find that it is not second to the classic Gaisser-Hillas function. Addi-
tionally, we introduce the parameter 𝜖 that carries information about the mass of primary particle,
additionally to the depth of the shower maximum.
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