
P
o
S
(
I
C
R
C
2
0
2
3
)
3
4
5

Measuring the muon content of inclined air showers
using AERA and the water-Cherenkov detector array of
the Pierre Auger Observatory

Marvin Gottowik𝑎,∗ for the Pierre Auger Collaboration𝑏

𝑎Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela,
Santiago de Compostela, Spain

𝑏Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina
Full author list: https://www.auger.org/archive/authors_icrc_2023.html

E-mail: spokespersons@auger.org

In this proceeding, we present a proof of principle study for estimating the number of muons of
inclined air showers proportional to their energy using hybrid radio and particle detection. We
use the radiation energy of an air shower to estimate its electromagnetic energy and measure the
muon number independently with the water-Cherenkov detector array (WCD) of the Pierre Auger
Observatory. We select 32 high-quality events in almost six years of data with electromagnetic
energies above 4 EeV to ensure full efficiency for the WCD reconstruction. The muon content in
data is found to be compatible with the one for an iron primary as predicted by current-generation
hadronic interaction models. This can be interpreted as a deficit of muons in simulations as a
lighter mass composition is expected from 𝑋max measurements. Such a muon deficit was already
observed in previous analyses of the Auger collaboration and is now confirmed for the first time
with radio data. Currently, this analysis is limited by low statistics due to the small area of
AERA of 17 km2 and the high energy threshold. We will outline the advantages of using radio
detection instead of the Auger Fluorescence Detector in future analyses allowing for high-statistic
measurements of the muon content as a function of energy.
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1. Introduction

Ultra-high energy cosmic rays can only be observed indirectly through air showers initiated
in the Earth’s atmosphere. The mass composition of cosmic rays can be inferred from certain
shower observables such as the depth of the shower maximum, 𝑋max, and the number of muons.
The muon number at ground-level increases nearly linearly with the cosmic-ray energy and with
the mass of the cosmic ray. The interpretation of the measured muon number in data relies on the
comparison with predictions made by full Monte-Carlo air-shower simulations based on hadronic
interaction models. Previous studies performed by the Pierre Auger collaboration, but also at other
experiments have shown a deficit of muons predicted by all current-generation hadronic interaction
models compared to data [1].

The potential of a combined analysis of the radio emission and the muons was already shown
for simulations [2]. In this proceeding, a new method to measure the muon content of inclined air
showers with zenith angles above 60◦ using hybrid radio and particle detections at the Pierre Auger
Observatory is presented. The feasibility of detecting and reconstructing such air showers with
AERA has been demonstrated [3, 4]. For inclined air showers, the water-Cherenkov detector (WCD)
performs an almost pure measurement of the muons, other particles are mostly absorbed in the
atmosphere and do not reach the ground. However, the radio emission of the air shower can still be
detected on the ground as there is neither significant absorption nor scattering in the atmosphere.
The radio emission originates from the electromagnetic component of the air shower and allows
the reconstruction of its energy. Hence, the electromagnetic energy and the muon content can be
reconstructed independently.

2. AERA and the water-Cherenkov detector array of the Pierre Auger Observatory

The Pierre Auger Observatory is a multi-hybrid detector for the measurement of ultra-high-
energy cosmic rays located in Mendoza, Argentina [5]. Its baseline detectors comprise the world’s
largest Surface Detector (SD) and a Fluorescence Detector (FD) overlooking the array from 4 sites
with 27 telescopes. The SD consists of 1600 water Cherenkov particle detectors deployed on a
hexagonal grid with a spacing of 1500 m covering an area of 3000 km2. For inclined air showers, it
is fully efficient for primary energies above 4 EeV. The Auger Engineering Radio Array (AERA) [6]
is located in the northwestern part of the SD. AERA consists of 153 radio stations distributed over
an area of 17 km2. It was deployed in 3 phases and contains two different kinds of electronics, a
self-triggered part and one that is triggered externally. The layout of AERA is shown in Fig. 1. Only
radio stations that can provide data on an external trigger are used in this analysis. This amounts
to 76 stations before 2 March 2015 (AERA phase II). Afterwards, 29 additional radio stations have
been deployed (AERA phase III).

The high energy threshold of the SD combined with the rather small area of AERA makes
it challenging to gather high statistics. Therefore, we will not be able to provide a high precision
measurement of the muon number in air showers. However, this work is meant as a proof of concept
showing the feasibility of such a measurement. Using a radio detector instead of the FD has the
benefit of an uptime of almost 100 % whereas the FD has an uptime of ∼15 %. Furthermore,
the geometrical phase space for high-quality event reconstructed with the FD is small for inclined
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Figure 1: Schematic map of AERA (left). II The orientation of the triangles indicate the three deployment
phases, empty triangles denote stations that are operated in self-trigger mode. Pictures of the two different
antenna types used at AERA (right) [7]. Top picture shows an LPDA antenna used for AERA phase I, bottom
pictures shows a butterfly antenna used for AERA phase II and III.

showers as a high fraction of air showers have the 𝑋max outside of the field of view of the telescopes.
Such a selection is not needed with a radio detection hence one can collect data more efficiently.

The total muon number is reconstructed by rescaling two-dimensional reference maps of the
lateral muon density to the measured signals of the WCD stations. The rescaling factor can be
interpreted as a relative muon number, 𝑅𝜇, with respect to the reference model, proton showers
simulated at an energy of 1019 eV using QGSjetII-03 as hadronic interaction model [8]. An example
of such a reference map is shown in Fig. 2 (left) for a zenith angle of 84◦.

The lateral distribution of the radio signal is described with a model made for inclined air
showers [9]. An example of a fitted lateral distribution function (LDF) for an event with a zenith
angle of (70.1 ± 0.1)◦ coming from (10.36 ± 0.03)◦ west of south is shown in Fig. 2 (right).
Integrating the LDF over the whole footprint yields the total radiation energy, 𝑆rad, which is directly
related to the energy of the electromagnetic particle cascade 𝐸EM [10]. A full reconstruction
of the primary energy from the radio data also requires an estimate of the contribution of non-
electromagnetic energy. This will be done in the future in a data driven method similar to [11],
together with a detailed study of the systematic uncertainties. For the present work, data is presented
as a function of the total radiation energy 𝑆rad, while the highest energy events are selected according
to the conversion described in [9].
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Figure 2: Contour plot of the average muon density in the shower plane for a 10 EeV proton showers with
a zenith angle of 84◦ (left). The 𝑦-axis is oriented in the direction of the magnetic filed projected onto the
shower plane. Figure from [8]. Distribution of the radio signal as a function of the distance from the shower
axis (right) for an event passing the high-quality event selection, cf. Tab 1. A signal is found for 37 antennas.

3. Predicted muon content in simulations

The scaling of the muon content as a function of 𝑆rad as predicted in simulations is derived by
simulating more than 100 000 inclined air showers with CORSIKA [12] using QGSjetII-04 [13],
EPOS-LHC [14], and Sibyll 2.3d [15] as hadronic interaction models. The simulations are made
using protons and iron nuclei as primaries with energies between 1018.4 eV and 1019.6 eV. For each
simulated air shower the total number of muons is counted and divided by a reference muon number.
This reference is obtained from a zenith-angle dependent parametrization of the total muon number
based on QGSjetII-03 simulations. The electromagnetic energy of the air shower is given by the
sum of the energy deposited by all electromagnetic particles. This is converted to the corresponding
𝑆rad based on [9]. Fitting a power law results in the dashed and dash-dotted lines in Fig. 3 for each
primary and hadronic interaction model.

The performance of the reconstruction is validated with a set of more than 1000 air showers
simulated with CoREAS [16] using QGSjetII-04 as hadronic interaction model and proton and iron
nuclei as primary particles. The geometry and energy are sampled randomly and cover the full
phase space of possible event detection. Showers were generated with energies between 2 EeV and
40 EeV and zenith angles between 58◦ and 82◦. The core positions were randomised such that a
sufficient number of antennas is expected to be within a maximum of three Cherenkov radii 1. The
simulations are reconstructed including a realistic detector simulation and the addition of measured
environmental noise from randomly selected timestamps.

A high-quality event selection is applied which limits the zenith-angle range from 60◦ to 80◦.
Furthermore, signals must me measured in a complete hexagon of SD stations around the station
with the largest energy deposit. This yields a bias-free energy reconstruction (estimated from the

1The radius of the Cherenkov ring in the shower plane increases from ∼200 m at a zenith angle of 60◦ to more than
700 m at 80◦.
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Figure 3: The different lines represent the predicted muon content of proton and iron induced air showers for
three different hadronic interaction models. The different primary particles are denoted by color, the models
by the linestyle. The profile indicates the reconstructed average muon content for discrete energy bins, the
𝑦-uncertainty is given by the uncertainty of the mean. See text for details.

number of muons) with a resolution of 19.3 % for events with a primary energy above the full
efficiency threshold of 4 EeV [8]. The radio events need to have a successful LDF fit and a signal
from a station inside of the Cherenkov ring. To ensure a high quality of the fit result more than
5 signal stations are required and the reduced 𝜒2 needs to be smaller than 5. As we only have
direct access to the electromagnetic energy, but not the primary energy we require that 𝐸EM is
above 4 EeV, which guarantees a primary energy above the full efficiency threshold. Occasionally
the reconstruction exhibits large uncertainties. We select events with a relative uncertainty on the
reconstructed 𝐸EM below 20 %. Events that have an opening angle between the shower direction
reconstructed with the WCD and AERA larger than 2.08◦ are removed from the analysis. The
threshold is given by the mean value plus three standard deviations of a Gumble fit to the full
opening angle distribution [17].

The profile of the reconstructed values is shown in Fig. 3. It is fluctuating around the model
line for proton primaries but exhibits a bias for iron nuclei. This bias originates from an energy-
dependent bias in the 𝐸EM reconstruction as the used LDF model is developed for the AugerPrime
Radio Detector [18] and not yet optimized for AERA. It can likely be improved with an optimized
LDF in the future. For the sake of the here presented proof-of-concept, study there is a sufficiently
good agreement of the reconstruction with the model prediction.
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Table 1: Number of events after each cut starting with 2663 reconstructed events. The first set of cuts is
related to the WCD reconstruction, the second one to the AERA reconstruction.

cut number of events after cut

60◦ ≤ 𝜃SD ≤ 80◦ 2002
number of candidate stations ≥ 5 1108
Full hexagon of stations 953

no thunderstorm conditions 849
SD-RD opening angle < 2.08◦ 788
has LDF fit with a station inside Cherenkov radius 532
𝐸EM > 4 EeV 50
number of stations > 5 40
reduced 𝜒2 of LDF fit < 5 37
relative 𝐸EM uncertainty < 0.2 32

4. Measurement of the muon content

In the following, the AERA data recorded between 26 June 2013 (start of AERA phase II) and
1 Mai 2019 (last date for which we have bad periods) are analyzed. The same event selection as in
Sec. 3 is applied. Furthermore, events that fall into thunderstorm periods [17] are excluded. This
selection yields 32 high-quality hybrid events, the number of events after each cut is given in Tab. 1.
The strongest cut is the minimum energy of 4 EeV due to the size of AERA.

The muon content in data is shown in Fig. 4 as a function of 𝑆rad. The profile indicates
an increasing number of muons for increasing values of 𝑆rad, ie. with increasing energy. The
measured muon content is compatible with the prediction of hadronic interaction models for iron
nuclei. A thorough estimation of the systematic uncertainties will be done in a future publication.
The expected mass composition can be derived from 𝑋max measurement of the Auger FD. In the
energy range of this analysis, the mean atomic mass number is expected to be between proton and
nitrogen [19]. Hence, one can conclude that there is a deficit of muons in simulations. This was
already found by other Auger analyses for primary energies above 4 EeV [20] as well as for primary
energies between 2 · 1017 eV and 2 · 1018 eV [21].

5. Conclusion

We showed a first estimate of the muon content of inclined air showers using hybrid measure-
ments combining radio and particle detection. This serves as a proof of concept for future analyses
with hybrid radio and particle events. We find a muon content in data that is compatible with the
prediction of hadronic interaction models for iron-induced air showers even though the composition
is expected to be between proton and nitrogen. This is the first time that it is demonstrated that
hybrid detection of the radio emission and the particles can be used to investigate the already known
muon puzzle.
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Figure 4: Muon content as a function of energy estimator (top) and normalized muon content (botton) to
remove the power-law scaling. In both figures, the model predictions are identical to Fig. 3. Measured data
are shown in black, a profile of the data is given in orange.
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Currently, the analysis is limited by the low statistics of 32 high-quality events which originate
from the small area of AERA of 17 km2 and the high energy threshold of 4 EeV needed for the
reconstruction with the 1500 m WCD array. The event statistics can be increased moderately by
including 4 more years of data in a future publication. A reconstruction of inclined air shower with
the 750 m WCD array is currently being developed which will allow reducing the energy threshold
considerably and therefore collect more statistics at energies below 4 EeV. With the AugerPrime
Radio Detector currently being deployed, this analysis can be extended to the highest energies to
allow for in-depth tests of hadronic interaction models with large statistics [22].
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