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The different elements of the interstellar medium have been continuously sampled through direct
and indirect measurements of various messengers, such as cosmic rays (CRs). In addition to
observations, numerical simulations of CR propagation, in particular diffuse transport, contribute
to understanding the corresponding W-ray emission components as seen by several experiments.
Up to now, the standard approach for modeling source distributions used as input of such transport
simulations mostly relies on radial symmetry and analytical functions rather than individual,
observation-based sources. We present a redefinition of existing CR source distributions by
combining sources observed with the High Energy Stereoscopic System telescope array (H.E.S.S.)
and a simulated source distribution, which follows the matter density in the Milky Way. As a
result, H.E.S.S.-inspiredGalacticCR source distributions are inferred. Weuse the PICARDcode to
perform3D-simulations of particle statistics inCRpropagation using our hybrid source distribution
models. This implementation of a three-dimensional source model based on observations and
simulations enables highly resolved propagation modeling. It opens the path for more realistic
CR transport scenarios beyond radial symmetry and delivers improved results in both the arm and
interarm regions of the Galaxy. Furthermore, it provides an enhanced picture of the Galactic W-ray
sky including structures from our source model as well as the introduced gas distributions.
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1. Introduction

Since the discovery of CRs penetrating our Earth’s atmosphere, their origin has been constantly
investigated. Nowadays, the main Galactic candidates for particle acceleration have been narrowed
down to astrophysical object such as supernova remnants or pulsar wind nebulae. However, even
with the H.E.S.S. Galactic Plane survey (HGPS) [1] offering the most comprehensive view of the
TeV sky in our Galaxy (so far), the resulting source population represents only a small fraction
of the contributing Galactic sources. The rest remains hidden under the detection threshold of
H.E.S.S. and other current instruments, due to their sensitivity and sky coverage. Therefore,
the combination of our sparse observed sample with simulated sources offers the possibility to
extrapolate our knowledge of a fraction of the Galaxy to the rest of it. In this manuscript we
describe the construction of a Galactic CR source model that is based on observations and can
be used to simulate CR transport up to describing the diffuse W-ray sky. The original model was
presented in [2], where more detailed information is provided.

2. Construction of the hybrid model

With the premise that most current Galactic sourcemodels relymainly on analytical models and
limit themselves to axial symmetry we aim to achieve three dimensional CR source distributions,
basing the selection of simulated sources on observations.

As our basis we use the synthetic source population presented in [3]. Its geometry is based on
a four-arm spiral Galaxy model [4] and its luminosity distribution on observed source properties
from the HGPS, using a large statistical sample of more than two million sources.

As observed sources we mainly use the findings of the HGPS, because it is considered the
most comprehensive view of the very-high-energy W-ray sources in our Galaxy. Still, the resulting
source catalogue only represents of a small fraction of the total Galactic source population, since the
sensitivity and sky coverage of H.E.S.S. are limited [1]. We get provided with a source catalogue
containing 78 sources, but only 31 of them are firmly identified and have estimated distances from
the observer. For the rest we aim to find a counterpart from the simulated source sample [3],
assigning them distances. We identify the best fitting simulated source in terms of position in the
sky, size and flux to each of our observed sources without distances. To do sowe use a k-dimensional
tree to assign each HGPS source its nearest neighbours from the simulated sample, staying within
a range of 0.1◦ in Galactic longitude and latitude. Out of this list of potential counterparts we only
consider simulated sources with extensions from 70% to 140% of the extension of the observed
source. From this sample of possible candidates for each of our HGPS sources we choose the best
fitting one by calculating the ratio between the observed flux and the fluxes of all potential simulated
sources. We select the source where this ratio is closest to one. This leads to a source sample of
85 observed sources, because we also include some earlier detections like for example the Galactic
center, SN 1006, HESS J0632+057 and the Crab Nebula.

For a more realistic modelling of the CR transport in our Galaxy we still want to add additional
simulated sources to this observed sample. We only take sources from [3] that would not have
been observable by H.E.S.S. into consideration. Therefore, we mask our simulated source sample
with the shape of the field of view of the HGPS, to create two sub-samples: one containing all
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simulated sources inside and one outside of the field of view of H.E.S.S.. For the sample outside
of the field of view there are no further constraints and all the sources can potentially be used for
our model, whereas for the sample inside of the field of view we exclude all sources that would
have been observed by H.E.S.S.. This is done according to their radial extensions (sources with
radial extensions U > 2◦ are considered to not be detectable) and their fluxes � in comparison to the
sensitivity B of H.E.S.S. in their direction, where we consider all sources for which � < B applies
into our model. However, since our underlying synthetic source sample is heavily oversampled we
need to reduce this number of potential source candidates to not outnumber the observed sources.
Therefore, we want to choose a smaller subsample from the original simulated sample by randomly
choosing sources. Meaning, that we have to define an upper limit for the number of simulated
sources. For that we present two different approaches in this work.

The original one is a luminosity approach, it was also used in [2], and defines an upper
luminosity limit for the Galaxy. Here we take the upper limit for the expected W-ray source
luminosity of our Galaxy of 6.3 · 1036 ph s−1 from [3]. We randomly sample simulated sources
until reaching a cumulative luminosity that is 10% below that limit. To include more observations
and energy bands into our model we also build models containing the sources from the Fermi
catalogue [5], applying a similar search for simulated counterparts as for the HGPS sources without
distances, but hereby only relying on Galactic longitude and latitude. With that we find possible
counterparts for 137 of the Fermi sources in our synthetic distribution and include those into our
model.

As a second method, that can only be used as a cross-check for the luminosity approach, we use
a number approach for the definition of the upper limit. Hereby, we try to estimate an upper limit for
the expected source number in the Galaxy by assuming a homogeneous source density throughout
the Galaxy. Naturally this is only an upper limit estimate but not a realistic source model. However,
by extrapolating the source density inside the FOV of the HGPS in combination with the sources
from the Fermi catalogue, to the rest of the Galaxy, we get another upper limit criterion. To extract
that upper number limit we use the masking of the field of view, performed before, to extract the
area of the HGPS field of view, projected on the G/H-plane of the Galaxy. The HGPS source density,
dHGPS =

#HGPS
�HGPS

, is calculated, from the number of sources inside the field of view of the HGPS
#��%( and the area of the FOV, as the amount of sources per kpc2 . Since we do not expect to only
find very high energy sources we also include sources from the Fermi catalogue [5]. The Fermi
sources are correspondingly divided into Fermi sources inside and outside of the H.E.S.S. field of
view. This gives us #FERMI,in and #FERMI,out. We expect to find additional #FERMI,in simulated
sources in the field of view of the HGPS and #out =

#HGPS
�HGPS

· �sim +#FERMI,out, where �sim is the area
of the simulated sample, simplified to a circle, simulated sources outside of the FOV. We randomly
pick sources according to those expected numbers from the corresponding simulated sub-samples.
The sources number we derive from this approach is again within the expected range from 800 to
7000 sources[3], with 869 sources and the total luminosity 5.53 · 1036 ph s−1 is also close to the
upper luminosity limit of our Galaxy [3].

Finally, we have three models to compare: Luminosity approach with HGPS sources only
(LumApp), Luminosity approach with HGPS and Fermi sources (LumAppFermi) and the number
approach (NumApp).
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2.1 Radial distribution of the CR sources in the hybrid models

The radial distribution of CR sources in the Galaxy has been studied thoroughly and suits as an
indicator for the plausibility of our source models. We compare our models with previously studied
specific source distributions ([6], [7], [8]), which all show a steep decrease towards the Galactic
center to almost zero sources, and a more recent study which combines CRs tracing from SNRs
with the molecular gas density [9]. Our models also show lower surface densities in the Galactic
center region (see figure 1), which can be related to the absence of a Galactic bar in the underlying
simulated sample [3]. However, our models follow the same Galactocentric radial profile as the
pulsar model, approaching the mixed model at greater distances. In a comparison of the luminosity
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Figure 1: CR source densities as a function of Galactocentric radius. We show the LumApp in magenta,
LumAppFermi in red and the number approach in cyan. We also show some radial distribution from the
literature (top to botton in the legend: [6], [7], [8], [9]).

with the number approach we can see that the latter shows lower source numbers within the field
of view (between 4 and 8 kpc) because we constrain the random sampling to not go over #FERMI, in

there, while in the luminosity approach we sample uniformly from all the Galaxy.

3. Cosmic-ray transport simulation and results

The impact of our new CR source models in CR transport is tested by implementing them in the
Picard code, which is computing steady state solutions for CR transport. For a detailed description
of the framework see [10] and for the transport parameters we used we refer to [2]. Alfvén speed
E� = 32.04 km/s and diffusion coefficient �GG = 7 · 1028 cm2/s have been tuned separately to fit
the observed spectra at Earth, as shown in figure 2. The secondary to primary ratios of our models
fit the observations at Earth, within the errors. However, there is a difference between the models
including Fermi sources in the low energy regime as the spectrum is softened. This is due to the
higher population of sources in this energy regime that introduce more primary particles. Therefore,
the models would require different tuning of the transport parameters, but for the comparison of the
different luminosity limits we kept the parameters constant for all simulations.
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Figure 2: B/C-ratio for our models (LumApp in magenta, LumAppFermi in red, NumApp in cyan) in
comparison with CR data taken from different experiments (top to bottom in legend: [11], [12], [13], [14].

The source term in the simulation consists not only of the three-dimensional positions of
the sources but also contains their fluxes, source classes, spectral information and energy ranges.
Where the last three have been assumed to have the same ratios as in our observed distributions.
With those parameters we can simulate CR density distributions and particle spectra as well as a
synthetic W-ray sky. The density distributions are shown for electrons and protons at 10 TeV in figure
3. The electron distribution shows the underlying synthetic model more clearly than the proton
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Figure 3: Right: Density distribution of simulated CR electrons at an energy of 10 TeV in the G/H-plane
of the Galaxy, using the distribution of the LumApp model, exemplarily. The Solar System is located at
(8.5, 0) kpc and the distribution is shown in a logarithmic scale for better visibility. Left: Same but for
protons.

distribution, since TeV-electrons diffuse only a small distance from their origin before loosing most
of their energy. However, we can still adumbrate the spiral arms as well as make out some of the
most luminous sources, which are stemming from the HGPS observations.

We show the proton and electron spectral intensities at Earth from our models together with
corresponding CR observations in figure 4. In the electron spectra (left side of figure 4), it is
visible that our models fit the observed data in the high energy regime. In the lower energy regime
simulations do not fit the observations as the experimental data is higher than our synthetic spectra.
This could be improved by adding more low energetic leptonic sources to our model, for example
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Figure 4: Left: Electron spectra for the LumApp, LumAppFermi and NumApp approaches with observed
data from different experiments (top to bottom in the legend: [15], [16], [17], [18], [19], [20], [21] Right:
Same but for CR protons. Experiments top to bottom: [22], [23], [24], [25].

by including the Fermi Pulsar catalogue [26].
With the Picard code we also simulate W-ray emissivities and fluxes, which is done sepa-

rately by line-of-sight-integration with a ring model for the relevant radiation processes (c0-decay,
bremsstrahlung, inverse Compton scattering). Since the inverse Compton channel is the most influ-
enced by the source model we show an exemplary simulation of that for one of our models together
with the total W-emission in figure 5. On the left side of figure 5 we can clearly see the impact of
the source distribution on the inverse Compton W-ray sky, since it is dominated by CR electrons.
Therefore, we observe higher emission in the inner Galactic region, because of the higher source
density, like we already saw in figure 1. However, since Galactic diffuse emission is dominated
by pion decay and in pion decay the emissivity is given by a convolution of the interstellar gas
distribution and the CR fluxes the sources only have a minor impact on the total gamma ray flux
(right side of 5).
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Figure 5: Left: InverseCompton scattering emission at an energy of 1TeV forLumApp approach, exemplarily.
Left: Same but for the total W-ray flux.

4. Conclusion

In conclusionwe can say that both the luminosity and the density approach are able to reproduce
measured CR quantities, like the secondary to primary ratio and particle spectra. This also leads
to a more constrained guess on the upper limit of the total source luminosity we expect the Milky
Way to have. Moreover, the density approach model is in coherence with observations and with
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the luminosity approach, which is an additional cross-check on the luminosity limit. However, we
can still apply refinements to the upper limit for the source number selections. Furthermore, in
the resulting particle spectra we can see some improvement potential, namely for example in the
inclusion of other data, like the FERMI pulsar catalogue [26], which can be addressed in future
studies, as well as more expansions to different energy bands.
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