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KM3NeT is constructing two large volume water Cherenkov detectors in the Mediterranean
Sea. By instrumenting the water with photo-multipliers, neutrinos can be detected through the
Cherenkov light from charged products of their interactions. The dominating signal, however,
comes from muons created in extensive air-showers resulting from cosmic ray interactions in the
top of the atmosphere. Despite the water column above, the highest-energy muons (> TeV) reach
the detectors. Air-showers develop in a non-isotropic atmosphere where the vertical temperature
profile, and thus the density, varies over time. The changing density of the atmosphere affects
the balance between interaction and decay (to muons) of mesons in the air-showers. Therefore,
the muon flux is expected to correlate with the seasons and short-term temperature fluctuations,
as confirmed by other experiments. In this contribution, we present a first measurement of
the correlation of the detected muon rate with the effective atmospheric temperature (weighted
by muon production spectrum and detector response) for the KM3NeT ORCA telescope. The
measured rate is compared with simulations, which model the time-dependent detector efficiency

and environmental factors for a constant atmospheric muon flux.
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1. Introduction

Extensive air-showers initiated by interactions of cosmic rays develop in the atmosphere.
After the initial interaction, many particles are created through re-interaction of the products with
molecules in the air, and through decays of unstable particles. Muons and neutrinos are created
through such decays, mostly from the light mesons: pions and kaons. In regions where the density
is higher such particles have a higher probability to interact. When the density is lower, the balance
shifts towards decaying before re-interaction. As the atmosphere is dynamic, in the sense that the
vertical temperature and thus density profile changes with time and location, the amount of muons
and neutrinos created varies with time. This seasonal variation of the muon and neutrino flux is
well measured by a multitude of underground detectors such as [1, 2, 5, 6, 8-10, 17, 19].
KM3NeT consists of two large-volume water-Cherenkov detectors, designed to detect neutrino
interactions. The smaller (7Mt when completed) ORCA detector, anchored at 2450 meters of depth
near Toulon, France, focuses on the determination of the neutrino mass ordering and oscillation
parameters. The larger (1 Gt when completed) ARCA detector, anchored at 3500 meters of depth
near Capo Passero, Italy, focuses on cosmic neutrino detection. Both detectors share the same
technology. Pressure resistant glass spheres with a diameter of about 17 inches, house 31 light-
sensitive 3-inch photo-multiplier tubes (PMTs) together with electronics for control, nanosecond
timing and readout. These so-called optical modules are organised in vertical structures called
detection units. These consist of two dyneema ropes along the whole length, to which 18 (buoyant)
modules are connected, a backbone cable with power cables and optical fibres going to each module,
and an anchor housing an electronics container. Power is provided from shore through a sea-floor
network, which also houses an optical-fibre network for data transport. Both detectors are currently
being expanded. Intermediate configurations of the detectors are referred to either ORCA-X or
ARCA-X, where X is the amount of detection units operational.

The aforementioned studies have used variations of the same equations that describe the relation
between the atmospheric temperature and muon rate. In line with that, we start here from the
relation[9, 11, 15]
AR ATery
(R) Terr)

ey

where AR is the deviation of the muon rate with respect to the average muon rate (R), and AT, s s the
deviation of the effective temperature from the average effective temperature (T, s ¢). This relation
is a simplified form, where the atmosphere is approximated as isothermal with temperature 7, s 5.
The effective temperature takes into account that the muon production spectrum P, is dependent on
the depth in the atmosphere y!, while the temperature also depends on the depth. The correlation
coeflicient, depends on the muon energies to which a detector is sensitive, through the details of
the muon production, in particular the ratio of pions and kaons in the relevant energy range. In our
definition of T, s ¢ the energy and zenith angle # dependent response of the detector is taken into
account via the effective area A.rr. The effective temperature is in essence the depth dependent
temperature profile, weighted with the energy and zenith dependent muon production spectrum and

I This is the column density as integrated from the top of the atmosphere.
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where Ej is the muon energy at sea-level. For this first study in the context of KM3NeT, an
analytical model based on cascade-equations from [14] is used for the muon production spectrum
P,,. In this contribution, we present a new method to measure the atmospheric muon rate in the
KM3NeT detectors. This method accounts for the fluctuations in the muon rate which are not due
to changes in the atmosphere, but due to environmental conditions and detector effects.

2. Dynamic environment and detector

A particular challenge in measuring the variation of the muon rate in the KM3NeT detectors
results from the fact that the detectors operate in a uncontrolled, dynamic environment. The
photo-detection rate of the photo-multiplier tubes is dominated by light from “°K decays and
bioluminescence. While the rate from “°K decay is rather constant, the bioluminescence is highly
dynamic both in time and intensity. The baseline counting rate per KM3NeT PMT is about 7 kHz,
with excursions of almost a factor 10 higher [3, 4]. Long term studies on median PMT counting
rates in ANTARES [13] indicate fluctuations at various timescales including monthly and yearly.
Such variations influence the muon detection rate. A moderately increased count-rate can increase
the detection efficiency, while an instantaneous high count-rate may trigger a high-rate veto at the
level of an optical module, suppressing the detection efficiency.

3. Simulation of muon flux and detector response

To simulate the muon flux at detector level, the fast parametric muon flux simulation software

Mupage [12] is used. Single and multiple muon events are generated on a surface close to and
surrounding the detector volume in the water. Efforts of re-tuning the parameters of Mupage on
simulation and data are ongoing within KM3NeT, with the aim to improve the description and
understanding of the atmospheric muon flux [18]. The tuning used in this analysis [16] is specific
for the detector configuration. It represents a simulated flux constant in time, and thus not subject
to atmospheric conditions. This is a key ingredient to this method.
The KM3NeT data taking happens in scheduled time periods of 6 hours which are called runs. The
simulation scheme of KM3NeT makes use of the recorded PMT counting rates, which are stored
for each PMT with a resolution of 100 s for each run. In this so-called run-by-run simulation
scheme, background photons are added to the photons resulting from the muons according to the
recorded rates within a run. Also the time-dependent measured photon detection efficiencies of the
PMTs are taken into account. In order to extract the effective area A, ¢, Mupage simulations are
used, re-weighted into a single-muon flux. As the effective area needs to be expressed in energy at
sea-level, a depth and angle dependent energy loss correction is applied per muon.
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4. Method

In order to extract the variations due to the changing muon flux, free from effects of the
environment and detector response, a new method has been developed. The underlying presumption
of the method is that the run-by-run simulation accounts for the influence of the ambient conditions
and detector effects which are reflected in the PMT count-rates, except the variations caused by a
change in muon flux. We define a time-dependent ratio of the recorded muon rate and the simulated

muon rate: R 0
datral
R ata (1) = —————— 3
C{W( ) sim(t) ( )
An average value of the of value R data (7) is indicated by (R dara data ). When the muon flux is properly
described by the simulation, the average ratio should be 1. In case of the tuned Mupage muon flux
parametrization for the ORCA-6 configuration and time period considered here, this is essentially

the case with a value of (Rdara) = 1.015 + 0.0005. We define a deviation in the muon rate ratio as

stm

AR dasa (1) = Rasa (1) = (R s )

To study the variation of the muon rate variation with effective temperature, we define equivalently

toeq. 1

AR gare o ATery )
= data 5o
Raga) T4 Ty )

with the underlying presumption that & gara = @7 if all ambient and detector effects on the muon

count rate are taken into account.

5. Data and simulation selection

The KM3NeT muon data analysed in this contribution is from the ORCA-6 detector and covers
a period from 2020-01-26 to 2021-11-18, with a total livetime of 374.59 days. Some data that
was excluded in this analysis would be accepted with the latest quality criteria. Selections are
applied to the data to remove events that are due to neutrinos, have badly reconstructed tracks in
terms of angular resolution, or are caused by ambient light. The implementation of these selections
include rejecting events that come from below (through the Earth); have a reconstructed energy
below 8 GeV; or have a too low likelihood value. All events in this analysis fired at least the trigger
aimed at identifying muon tracks. After selection, the median zenith and angular resolution on
the muon direction, evaluated from simulation, are 0.422° and 0.708° respectively. The dataset
consisted of 1.648 x 108 data events with (Rgata) = 5.0884 +£0.0056Hz and 1.623 x 108 simulations
events with (Ry,.) = 5.0127 + 0.0045Hz.
The atmospheric temperature profile is downloaded from the public data repository of NASA’s
Atmospheric Infrared Sounder (AIRS) satellite [7]. The data covers the atmospheric column above
the location of the ORCA detector between 42° — 43° latitude and 5° — 7° longitude in a 1-by-1
degree grid. The dataset provides temperature measurements at 01:30 and 13:30 (so twice a day),
and on 24 different pressure levels, from 1 to 1000 hPa, together with error estimates. In figure
1(left), the atmospheric temperature profile for the whole period is shown. One can notice slow
variation in spring and summer, but also shorter time-scale variations in the stratosphere such as
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Figure 1: The atmospheric temperature above the ORCA detector in the period of ORCA-6 (left) and its
3-month average profiles (solid lines) for the year 2020. They share the left pressure axis which is given in
24 discrete layers[7]. The dashed lines (right) are the product of A, rs with the pion-only, kaon-only and
combined muon production spectrum P, integrated over energy and zenith angle. The shared right axis
shows the average geometrical height that corresponds to the pressure.

those which are very prominent for all winter periods covered. In figure 1(right) these profiles are
averaged over 3 month periods for 2020 and are labeled according to the starting month. Noticeable
is the different profiles for the the first and last December (each holding roughly same number of
measurements). The same figure also shows the depth dependent product of the effective area with
the muon production profiles, separate for pions, kaons and their sum, integrated over energy and
zenith angle. These values correspond to the bracket term in eq. 2. The upper pressure layers carry
the largest weights, due to P, (Ey, 6, x) being large at low y, and thus temperature changes in the
upper atmosphere are expected to be of largest influence on the muon rate. The higher frequency of
data-taking runs was used to estimate the change of the muon rate during a 12 hour interval, which
was used for the systematical uncertainty of the correlation. In order to match the frequency of the
atmospheric temperature data, the KM3NeT dataset was re-sampled to periods of 12 hours.

6. Results

The challenge to extract the muon rate variations with time are illustrated in figure 3(top), where
both the measured muon rates from data and the predicted muon rate from the run-by-run simulation
are presented. Much of the variations in the muon rate can be attributed to the ambient conditions
as they are very well reproduced with the constant flux used in the simulation. Qualitatively, the
changes in muon rate are well reproduced, in particular at the shorter timescales. There seem to be
some longer time-scale variations that are not seen in the simulated data.

The merit of the method introduced, where the measured rate is divided by the predicted rate
R% (1), per formula 4 is illustrated in figure 3(bottom). While there are still short time variations,
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these are much suppressed and a periodic modulation can be seen. The amplitude of this modulation

is around 2 to 3 %, while the period seems consistent with a year. The highest rates are in the

Northern summer of 2020. A lower peak in 2021 seems in line with an overall decrease in rate over

the analysed period.

A correlation plot of the relative change in rate
AR data /(R datu) with the relative change in ef-
fective temperature AT, 7 /{T.5y) for 12 hour
bins is shown in figure 4. The error bars on the
points are from figure 2 and 3 and include sev-
eral sources of uncertainties besides the statisti-
cal errors. Included are the errors on the mea-
surement of the temperature for each pressure
layer, the uncertainty due to rate variations at
time-scales smaller than 12 hours, and a conser-
vative uncertainty on the effective area of 10 %.
There is a clear correlation between the effective
temperature and the muon rate. Several clusters
of correlated points suggest that there are other
effects that are not accounted for. For example,
the cluster of points at the right below the fit
line, are all of the same period in July 2021.
Shown in the figure is a fit of the linear function

ARaara [{Rdata) = @ dara AT sy [{Tef ) + B,

(6)
where @y dara and B are free parameters. All
uncertainties were taking into account. The

value of the slope was @7 daa =1.005 +0.041

sim

and with a residual variance y?/dof = 0.44.
A null-hypothesis fit (of a horizontal line) gave
B =0.041 +0.061 with y?/dof = 0.74.

7. Conclusion and Outlook

In this work, a new method to measure
the variation in atmospheric muon flux un-
der changing local ambient conditions and effi-
ciency of the KM3NeT detectors has been pre-
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Figure 2: Relative variation (left y-axis) in effective
temperature above the ORCA-6 detector. The right
y-axis shows the absolute temperature.
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Figure 3: The data and simulated muon rate (top) with
their ratio (bottom) for the whole ORCA-6 period. The
error-bars (only shown in bottom) include statistical
and systematic uncertainties are added in quadrature.

sented. This was applied to the KM3NeT/ORCA-6 dataset and a correlation of the high energy
muon rate with the effective temperature was found. In this first study, simplified, analytic, models

have been used for the muon production and propagation, combined with a parametric simulation

of the muon flux in the water. Hints towards more complex time-dependent effects on the muon rate

require further study, in order to understand whether they originate from the atmosphere or detector
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Figure 4: Relative variation in percentage of the effective temperature 7.7 and data/simulation ratio

R Data

. The orange dashed line is eq. 6 fitted to the data, using y = slope X x + intercept. The fit takes into

Simulation

account both uncertainties.

and environmental effects that are not corrected for in the simulations. In future studies a more
detailed modelling e.g. by the use of full extensive air-shower simulations will be used, together
with data from the growing ORCA and ARCA detectors.
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