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The IceCube Observatory provides our highest-statistics picture of the cosmic-ray arrival directions
in the Southern Hemisphere, with over 700 billion cosmic-ray-induced muon events collected
between May 2011 and May 2022. Using the larger data volume, we find an improved significance
of the PeV cosmic ray anisotropy down to scales of 6◦. In addition, we observe a variation in
the angular power spectrum as a function of energy, hinting at a relative decrease in large-scale
features above 100 TeV. The data-taking period covers a complete solar cycle, providing new
insight into the time variability of the signal. We present preliminary results using this up-to-date
event sample.
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11 Years of Anisotropy in IceCube

1. Introduction

One of the goals of astrophysical observations is to identify the sources of cosmic rays and
the mechanism by which they are accelerated and injected into the interstellar medium. The
cosmic ray particles observed on Earth carry the general properties of the sources from which they
originated and the medium traversed in their journey. The study of cosmic ray transport is a key to
understanding their astrophysical origin. Most investigations rely on the information derived from
energy spectrum and mass composition measurements. However, measuring their arrival direction
offers a method to study the cosmic ray pitch angle distribution in the interstellar medium, which
provides a direct probe of interstellar diffusion properties [1]. Several theoretical models predict
an anisotropy in the cosmic ray arrival directions that results from the distribution of sources in the
Milky Way and diffusive propagation of these particles [2–11].

Over the last two decades, large and modern ground-based experiments have provided high-
volume data that facilitate state-of-the-art analyses of cosmic ray anisotropy in the TeV-PeV energy
range (see [12–18] and references therein). The observed anisotropy (up to the order of 10−3 in
relative intensity) possesses a complex structure manifesting at different angular scales. It also
appears to evolve with energy as well. New generation experiments currently under design (e.g.,
SWGO [19, 20] and IceCube-Gen2 [21]) will further enhance the scientific reach, in addition to
making it possible to provide additional full-sky coverage for unbiased anisotropy observations.

This work presents the up-to-date cosmic ray anisotropy results observed by the IceCube
Observatory using about 700 billion events collected from 2011 to 2022. IceCube is an astroparticle
observatory at the geographic South Pole, consisting of a cubic kilometer of instrumented volume
over a kilometer under the ice surface, sensitive to cosmic rays via the muonic component of air
showers [22]. The observation shows the evolution of the arrival direction distribution from 10 TeV
to 530 TeV median energy, with high statistical significance.

2. Data Analysis

The methods used in this analysis are largely consistent with previous anisotropy studies
in IceCube [12–14, 16, 23]. We incorporated improvements in the cosmic-ray shower physics,
the experiment’s response in our Monte Carlo simulation, and systematics since the last major
publication, as presented in Ref. [24]. The most significant change lies in the increased statistics
(over a factor of two compared to the results in Ref. [16]), allowing for more detailed energetic
studies and spanning a full solar cycle.

To analyze cosmic-ray anisotropy, we first need to build a reference map representing the
detector’s sensitivity to an isotropic cosmic-ray flux. For this, we use a time scrambling method [13].
The data map contains the directions of events in sidereal coordinates (RA, Dec) calculated from
their local coordinates (𝜃, 𝜙) and arrival time 𝑡. To build the reference map, each event in the dataset
is assigned a random time sampled from the time distribution of all events over a time window Δ𝑡.
This approach maintains both the local arrival direction distribution and the temporal distribution
of events while scrambling their sidereal coordinates. For every real event in the data, we generate
20 time-scrambled events in order to reduce statistical fluctuations. The IceCube detector rate is
very stable over a period of 24 h, which means we can choose Δ𝑡 = 24 h.
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Once we have constructed a reference map, we can compute the relative intensity for each pixel
in the map by

𝛿𝐼𝑖

𝐼𝑖
=

𝑁𝑖 − ⟨𝑁𝑖⟩
⟨𝑁𝑖⟩

, (1)

where 𝑁𝑖 and ⟨𝑁𝑖⟩ are the number of events at the 𝑖th pixel of the data map and the reference map,
respectively. The statistical significance of any deviation from the reference level can be calculated
using the Li & Ma method [25]. This method takes into account statistical fluctuations in data and
reference counts. We apply “top-hat" smoothing to the data and reference maps in order to increase
the sensitivity to regions with excess at different angular sizes by adding all counts within a given
angular radius of each pixel.

Figure 1: Median cosmic-ray primary energy as a
function of reconstructed shower direction (cos 𝜃) and
number of DOMs triggered (log10 𝑁). This table is
the result of a 2D-histogram populated using simu-
lated events, then smoothed with splines to avoid low-
statistics artifacts at the highest energies.

The energy reconstruction is performed us-
ing a simple lookup table. Simulated events
are weighted to a Gaisser H3a composition
model [26] and binned based on the number
of digital optical modules (DOMs) triggered
(𝑁channel) and the reconstructed arrival direc-
tion of the cosmic ray primary (𝜃reco). Both
of these parameters correlate strongly with the
energy of observed events — more energetic
showers trigger more DOMs on average, and
showers with larger zenith angles must pass
through more of the atmosphere, filtering out
lower-energy events. Each bin is then assigned
its median energy value and we smooth the table
to avoid statistical artifacts at the highest ener-
gies where simulation is limited (Fig. 1). Using
this table, each event is assigned an energy bin
based on its 𝑁channel and 𝜃reco values.

The reconstructed energy bins have true
energy distributions that overlap significantly,
but we can still use them to study changes in
the observed anisotropy as a function of energy. Previous studies show wide regions of excess
and deficit (right ascensions of 30-120◦ and 150-250◦, respectively) at low energies, replaced by
a wide, dominant deficit centered at a right ascension of about 80◦ [16, 24]. Despite reduced
statistics, the high-energy deficit is sufficiently strong to make a visible impact on the large-scale
structure map, previously reported using all observed events. For this reason, we now show the
large- and small-scale structure visible in the Southern Hemisphere using only the lowest energy
bin. This approach should help disentangle the separate low- and high-energy signals. A high-
energy map is also shown, consisting of the three highest energy bins in our analysis (i.e., events
with log10(𝐸/GeV) > 5.5). The true energy distributions have median energies of 13 and 530 TeV,
respectively, with a 25% overlap.
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3. Results

Figure 2 shows the large- and small-scale structure for the lowest reconstructed energy bin.
The large-scale structure map is largely equivalent to the energy-binned maps shown in previous
analyses [16, 24], with large regions of excess and deficit observed at high significance. The map
of small-scale structure is new, having previously only been shown for all events. In previous
studies, there was a deficit in the small-scale map located between right ascensions of 60− 90◦. No
significant structure is present in the low-energy small-scale structure at that location, indicating
that previous observations featured signal contamination from high-energy events.

Figure 2: Relative intensity (left) and significance (right) for events with log10 (𝐸reco/GeV) < 4.25. Maps
are in equatorial coordinates and have a top-hat smoothing radius of 5◦. The large-scale structure (top) is
the result of considering all events. The small-scale structure (bottom) represents the residual signal after
subtracting off the best-fit dipole and quadrupole components. Pixels below a 5𝜎 threshold in the significance
map are shown in grayscale.

At higher energies, the only significant feature continues to be the deficit located at a right
ascension of about 80◦, as shown in Fig. 3. To account for the reduced statistics at these energies,
we used a larger smoothing radius consistent with previous energy analyses (20◦), as opposed to the
5◦ radius commonly used in large- and small-scale structure studies. The map of the small-scale
structure is omitted as, even with this larger smoothing radius, no significant structure is observed.

Figure 3: Relative intensity (left) and significance (right) maps for all events with log10 (𝐸reco/GeV) > 5.5.
Maps are in equatorial coordinates and have a top-hat smoothing radius of 20◦. Pixels below a 5𝜎 threshold
are shown in grayscale.
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The increased statistics of the 11-year dataset allow for IceCube’s first look at the angular
power spectrum of the cosmic ray anisotropy as a function of energy. Figure 4 shows the power
spectra for each energy bin, excepting the highest-energy one where we lack sufficient statistics. The
shaded noise bands represent 1, 2, and 3𝜎 containment for power spectra produced in response to an
isotropic sky, simulated by varying background maps within Poisson uncertainties. The increasing
power of the noise floor with energy is the result of decreasing statistics. It is important to note
that these plots display the observed power spectra — IceCube’s partial sky coverage results in
correlation between multipoles, producing a ringing effect. This effect is avoidable only through
collaborative full-sky analyses with other detectors [27].

An alternative method of visualizing the change in the angular power spectra over energy
is to plot the behavior of a single multipole. Figure 5 shows the phase and amplitude of the
dipole component as a function of energy, as compared to the results from other experiments. The
calculation methods for this plot are slightly different; following the procedure used in Ref. [16],
we instead use a harmonic fit (up to ℓ = 3) on a one-dimensional projection of the relative intensity
as a function of right ascension. The resultant dipole component displays a transition in phase and
amplitude occurring near 100 TeV — consistent with previous work in IceCube and results from
other experiments.

In order to look for time-dependent variation in the anisotropy, we use the same one-dimensional
projection as when finding the phase and amplitude of a best-fit dipole. Figure 6 shows the
relative intensity for bins in right ascension, with each data series representing a different calendar
year. Use of calendar years greatly reduces the systematic uncertainty of solar influences on the
sidereal signal as seen in the anti-sidereal frame, making statistical and systematic uncertainties of
similar magnitude [24]. Combined with the extended observation period, the reduced systematic
uncertainties hint at the potential for time-dependent behavior in some bins, where the variations
are greater than expected systematic variations about the 11-year average values shown in gray. A
study dedicated to determining the significance of this effect is planned.

4. Conclusion

We have analyzed over 700 billion cosmic-ray-induced muon events collected by the IceCube
Neutrino Observatory between May 2011 and May 2022 to study the arrival direction distribution
of cosmic rays in the TeV-PeV energy range. The increased event volume by a factor of two since our
last report [16] made it possible to improve the significance of the large- and small-scale structures
of the cosmic ray anisotropy up to PeV energies and down to scales of 6◦.

The latest study includes several improvements to previous IceCube analyses of the observed
anisotropy in cosmic ray arrival direction. The observed angular structures and power spectrum are
consistent with previous measurements, but we can now report significant features in our highest-
energy map. In addition, we observe a variation in the angular power spectrum as a function of
energy, hinting at a relative decrease in large-scale features above 100 TeV.

In addition to greater statistics, the use of single detector geometry enables the study of data by
calendar year as opposed to detector year and thus reduces systematic uncertainties in the sidereal
anisotropy that arise from interference with the solar frame. Additional improvements in our
simulations and a larger Monte Carlo sample result in better energy reconstructions.
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11 Years of Anisotropy in IceCube

Figure 4: Angular power spectra for the energy bins shown in Fig. 1. Systematic uncertainties (shaded
boxes) represent a standard deviation of power spectra calculated using identical input𝐶ℓ values with random
orientations. Statistical uncertainties (error bars) are calculated by fluctuating pixel counts within Poisson
uncertainties. The large shaded bands represent the reconstructed power from an isotropic sky. The highest
energy bin (log10 (𝐸reco/GeV) > 6.5) is omitted, as its power lies within the isotropic bands at all multipoles.
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