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After nearly 20 years of data-taking, the measurements made with the Pierre Auger Observatory
represent the largest collection of ultra-high-energy cosmic ray (UHECR) data so far assembled
from a single instrument. Exploring this data set led to a deeper understanding of the UHECR flux
and many surprises. In particular, studies aiming to investigate and leverage the mass composition
of UHECRSs have played an important role in empowering discovery. This contribution will present
an overview of the analyses of primary mass composition carried out during the first phase of the
Observatory. The overview includes analyses derived from measurements made by the surface,
fluorescence, and radio detectors covering energies ranging from 0.1 EeV up to 100 EeV. Special
attention will be given to recent advances and results to provide a complete picture of UHECR
mass composition at the Observatory as it moves to its next phase, AugerPrime. Additionally,
specific updates will be given to studies focusing on mass trends from surface detector rise-times,
Xmax dependent anisotropies, and UHECR beam characterization using the correlation between
Xmax and signal amplitudes at the ground.
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Phase-I of the Pierre Auger Observatory

The Pierre Auger Observatory has been observing ultra-high-energy cosmic ray (UHECR) air
showers since Jan 1st, 2004 when data-taking began with 154 water-Cherenkov detectors (WCD)
spaced at 1500 m and two partially completed fluorescence detector stations. The size of the
Observatory then rapidly grew to its full extent. Since June 2008, it has been making precision
measurements with 1600 WCD stations (the SD) and four fluorescence detector stations, each
housing six fluorescence telescopes (the FD) [1]. Later, a three-telescope high-elevation angle FD
extension (HEAT) and an infilled, 750 SD array were added to extend sensitivities to lower energies,
and the 17 km? Auger Engineering Radio Array (AERA) was installed [2]. The Observatory then,
more or less, remained in this configuration accumulating data through 2021 when the upgrade
of the Observatory, Auger Prime [3], began to be deployed, changing the SD data. The data
resulting from measurements of UHECR events made with the pre-upgrade instrumentation of the
Observatory are referred to as the Phase-I dataset. This report focuses on the implications drawn
on the mass composition of UHECRs thus far extracted from the analysis of the Phase-I dataset.

UHECR mass composition in Phase-I

A critical observation made during Phase-I of the Pierre Auger Observatory was that the mass
composition of UHECRs strongly evolves with energy. The composition of the UHECR flux above
100 PeV can be generally described as follows. First, the vast majority of UHECR primaries are
ionized atomic nuclei. Second, as energy increases, the mean mass of these nuclei first decreases,
reaching its lightest point around 3 EeV, and then afterward, increases significantly. Third, over
much of the energy range, evidence points to a UHECR flux best described as mixed in composition;
however, above a few EeV, the flux continually increases in purity as energy climbs. These trends
are robust, derived from a large variety of measurement techniques, strongly constrain possible
acceleration and propagation scenarios, and are not dependent on hadronic interaction models.

The first indications of the above-described mass trends came from the measurements of the
depth of shower maximum (Xyx) in 2010 using events simultaneously observed by the FD and
SD (Hybrid events) [4]. Shower Xp.x is a compelling mass-sensitive observable as it is directly
tied to the depth at which the first interaction of the UHECR primary particle occurred in the
atmosphere, which naturally depends only on its cross-section and, therefore, in the case of atomic
nuclei, its mass. This straightforward relationship means general mass trends can be extracted by
looking at the energy evolution of the first two moments of Xy« alone without relying on models.
After this initial publication, the hybrid Xp,x analysis method was frequently updated [5-7], and
Xmax based analyses were developed for the SD array, AERA, and the low energy FD, HEAT. The
most up-to-date summary of the latest X;,,x measurements made using FD [8], SD [9], AERA [10]
and HEAT [6] is shown in Fig. 1, which clearly exhibits the above-described trends. There is
an exceptional agreement between methods for (Xnax), despite a different X,a.x scale appearing
in the FD, AERA, and SD/HEAT results due to progressive changes to reconstruction methods.
There is some tension between the FD and SD in o (Xp,x), which may be due to residual model
dependencies in the SD result or statistical effects in the FD result. The FD and SD measurements
are of particular interest and are the subject of dedicated contribution in these proceedings ([8, 9]),
which should be consulted for analysis details and expanded results.
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Of the available techniques, the measurement of X;,,x using hybrid events delivers the highest
resolution and lowest model dependence. However, it is also limited by the low uptime of the
FD, Xmax dependent aperture, and the need to correct for atmospheric conditions. As a result of
this, hybrid measurements struggle with low statistics and relatively high systematics, limiting their

power at energies above 10'%-3

eV, an energy range critical to identifying astrophysical sources [11].
Statistics can be improved by deducing UHECR composition from SD data. However, unlike the
FD, the SD can not directly observe the development of showers. Instead, SD methods must analyze
the timing structure and distribution of particles arriving at the ground to extract signatures related
to shower development and primary particle type. For example, a data-driven method used the
mean risetime of signals from SD stations in an event (A) as it is related to the proximity of the
shower maximum to the ground. By evaluating how the mean value of A evolved with energy,
the mass trends seen in the Hybrid data were confirmed and extended to 100 EeV [12]. The most
recent SD-only composition analysis applies machine-learning algorithms to the WCD signal traces
collected to simultaneously leverage all SD information to estimate shower Xp,ax directly, delivering
a strong improvement over earlier techniques [9, 13]).

The direct measurement of Xp,,x, when combined with predictions from hadronic interaction
models, allows for the straightforward calculation of the first two moments of the log of the mass
of the primary particles (In A) making up the UHECR beam. An overview of the moments of
In A is shown in Fig. 2, which likewise shows impressive agreement between FD and SD-derived
measurements. The plot of first moments ((In A)) describes the energy evolution of the mean
mass of primary cosmic rays and clearly shows the beam first becoming lighter before turning
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around 3 EeV to becoming consistently heavier with energy for all hadronic models considered,
with QGSJet-I1.04 predicting the lightest composition and Sibyll 2.3¢ predicting the heaviest.

Interpretation of the second moments of In A, V(In A), is more complex than the first moments.
As energy increases, the beam moves from a regime of high mixing (values greater than zero) to one
of higher beam purity (values around 0), with that change occurring a few energy bins higher than
the 3 EeV minimum in mean primary mass. However, in both the FD and SD measurements derived
using QGSJet-11.04, one will also notice that at an energy above ~ 2 EeV, the variance of In A crosses
below the values associated with a pure composition into a forbidden regime. At these energies,
the results of QGSJet-11.04 are unphysical. Its predictions are clearly in tension with observations,
providing strong evidence that QGSJet-I1.04 fails to adequately describe the fluctuations in Xy,x for
real showers. As a result of this deficiency, it is recommended to only utilize this tool in situations
where an inaccurate prediction of shower development will not adversely affect a study.

Obtaining a precise description of the UHECR beam
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Figure 3: S33/Xnm.x correlation from hybrid
data. The * in S and X}, denotes normal-
ization to 10 EeV.

ankle, becoming compatible with zero and, therefore, less
mixed compositions at higher energies. The bottom panel
of Fig. 3, which demonstrates the expected correlation for
beams with different mean masses and degrees of mixing (generated with Sibyll 2.3c) with the
correlations seen in hybrid data indicated, provides a quantitative interpretation of this observation.
The negative values observed below the ankle are compatible only to mixes with o-(In A) > 1.0
providing us with the hadronic interaction model-independent [7] evidence for a primary mix
containing nuclei heavier than helium (for the maximum p-He mixing o-(In A) = 0.7).

A powerful additional interpretation of the Xy, data is possible by fully embracing model
dependencies. Specifically, the observed distributions of Xy.x can be fit with model-generated
templates of different primary mass groups to estimate how much each group contributes to the
overall flux. From the results of this process, shown in Fig. 4, several conclusions can be drawn.
First iron is almost entirely absent from the flux between 10'3#eV and 10! eV. Second, protons
are a minor component above the ankle and become rare at the highest energies. Third, there
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appears to be significant mixing in adjoining mass groups at all but the highest energies. Despite
the reliance on models, the fractional fit approach is an effective technique for understanding the flux
and generating a critical dataset for astrophysical modeling. As such, the methodology and results
for these fraction fits are explored further in a dedicated contribution in these proceedings [17].

Update on the correlation between X,,x and the galactic plane

Previous studies [18, 19] showed that there is an indication for a difference in the mean
composition of UHECRs arriving within 30° of the galactic plane (on-plane) as compared to
those arriving farther from it (off-plane) in the hybrid data. Since those reports, the process of
reconstructing the longitudinal shower profile [20], the corrections for the aerosol content of the
atmosphere [21], and the Xy,,x analysis itself [8] have all undergone significant changes. In addition,
the dataset has been expanded by adding three more years of data. Thus an update of the Xpax
anisotropy result using the Phase-I data set, reconstruction, and analysis methods is warranted.

The anisotropy test uses the Anderson-Darling two-sample homogeneity test (AD-test) [22] to
compare the cumulative X distributions from the on- and off-plane regions above some energy
threshold (Ey,). Because a heavier on-plane sample was predicted, the AD-test has been modified
to return a value of —2 when the (Xpax) of the on-plane sample is higher than that of the off-
plane sample to build the test statistic (TS). To form the cumulative Xy« distributions the energy
dependence of X« is removed by subtracting (Xpyax) for iron as predicted by EPOS-LHC:

’ EPOS
KXimax = Xmax = (Xmax Fe -

)]

Next, an optimization scan is performed on the data taken up until December 31% 2012
(46.6 % of the total data) to select the minimum threshold energy and galactic latitude cut-off,
which maximize the significance of the on- and off-plane X/ ,, difference. The results of this scan
can be seen in Fig. 5, where the same optimal energy and latitude thresholds, 10'87 eV, and 30°,
respectively, are found with a TS of 6.7.
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Figure 5: Parameter scan over 46.6% of the data.
then taken as systematic uncertainties.

At this point, a test looking for a difference in Xp,,x for events arriving near and far from the
galactic plane can be carried out on the blind data using the prescribed thresholds identified in
the scan. The results of this test are summarized in Fig. 6 and show that with the new dataset,
reconstruction methods, and atmospheric corrections, the on- and off-plane difference remains but
is reduced in magnitude. With the new data and methods, the mean difference (off — on) between
the integrated X7 ., distributions is 5.1 + 1.5J:22'.12 g/cm? while the difference in the widths is now a
negligible 0.5 + 2.1f32'.51 g/cm?. When compared to the former differences of 9.1 + 1.6J:22'.12 g/cm?
and 5.9 + 2. 1t32'.51 g/cm? respectively, the change is substantial.
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Figure 6: The first (left) and second (right) moments of the Xmax with growth trend and 68 % and 95 % trend
distributions from on- and off-plane regions. CIs. Significance indicated on the right.

With the lower overall difference in the first two moments of the on- and off-plane distributions,
the TS for the blind and combined datasets are reduced now to 4.2 and 10.9, respectively. Using
the same Monte Carlo methods described in [19] leads to end statistical significances of 2.7 o for
the blind data and 3.2 o for all data. When systematic uncertainties on the mean difference and the
difference in width are additionally considered, the significance of the blind data and all data results
are reduced to 2.0 o and 2.5 o respectively.

To interpret the result and investigate what has changed from earlier reports, the composition
mapping method described in [19] is used. The result of this mapping procedure produces a figure
where the positive (negative) red (blue) values display that UHECR arriving from within 30° of that
point have a lighter (heavier) mean mass relative to the rest of the sky. Fig. 8 shows the sky map
which results from studying the Phase-I data above 1037 eV. In it, the excess of heavy particles
along the plane is still present within 60°, however, the correlation with the galactic plane is weaker
due to features at high and low galactic longitudes.

In the new Phase-1 FD data, there is no longer strong support for a correlation between Xy«
and the galactic plane with the hybrid data alone. From Fig.7, it is evident that this change is
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not due to an absence of the correlation in the newly collected data but rather due to an overall
lowered correlation over the full breadth of the Phase-I dataset. Because there was an effect over the
whole dataset, the reduction of the signal is likely sourced from the changes in the reconstruction
procedures described in [20], the atmospheric corrections described in [21], or the X ,x analysis
itself [8]. One or all of these changes may have eliminated a systematic effect that was exaggerating
the strength of the signal. However, the specific cause for the signal reduction is unknown at this
time. Therefore the anisotropy results presented in this proceedings are preliminary pending further
investigation. It is apparent from the change in results that an independent test of the result is
needed to confirm or refute the anisotropy, as the current rate of signal growth will not exceed 5 o
observation until 2035. To this end, the SD Xp,x analysis described in [9] is being prepared to test
the anisotropy signal presented here and will be included in the eventual publication of this result.

Indication of a complex mass/energy evolution above 2 EeV in the phase-I SD data

As reported in [9], with its considerable statistical power, SD X,.x can be used to reject a
constant mass evolution above 3 EeV at more than 4 0. Fig.9 provides a coarse summary of the
result, as the linear fit in the left panel is a much poorer description of the data (y?/NDF = 3.33)
than a 3-break fit to the linear-fit residuals ()(2 /NDF = 1.47). Because SD X,.x relies on the
use of hadronic interaction models to train deep-learning neural networks to reconstruct Xpx,
confirmation with a data-driven analysis would increase confidence in the result. The FD lacks
the necessary event statistics to resolve the features. However, A, a parameter related to the mean
risetime of SD signals, is also a mass-sensitive parameter with comparable statistics to SD Xp,x and,
therefore, the energy evolution of its mean ({A)) may be sensitive enough to resolve the features.

A simple procedure is used to follow up the SD Xp,.x result with the risetime data. First, the
linear energy evolution of (6) is fit, and the reduced y? value and residuals to the fit are extracted.
Then, the residuals are fit with a 3-break broken line function with the break locations fixed to those

e T
E  X2/NDF=4525/13 + E

10f  X/NDF=1027/7 E

Figure 9: A linear fit to the
energy evolution of SD X,
(left) and a broken line fit to
the residuals of the fit (right).
1 The 3-break fit is preferred.
3 1 For all details, see [9].
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found in SD Xpax, and the reduced y? value is extracted. As shown by comparing the two panes in
Fig. 10, the 3-break fit produces a lower reduced y? than the linear fit providing data-driven support
to SD Xmax, though more in-depth studies are needed to confirm the result fully.

Discussion

After nearly two decades, the Pierre Auger Observatory has amassed the most comprehensive
collection of data on UHECRSs thus far assembled. Through the careful analysis of this data,
the overall picture of the composition of arriving UHECRSs has vastly improved. We now know
that UHECRSs consist of many atomic nuclei species ranging from protons to ionized iron. Their
mass composition evolves strongly with energy and possibly has fine-grain features like those
seen in the spectrum. The ankle is not proton-dominated, and flux trends toward heavy at the
highest energies. And, while currently, no significant mass-dependent anisotropies can be claimed,
there are promising hints that significant anisotropies may be resolved in the future. With these
discoveries and leads combined with promising increases in mass sensitivity expected from upgraded
instruments, the future looks bright for the next phase of data-taking at the Pierre Auger Observatory.
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