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The Pierre Auger Observatory (Auger) and the Telescope Array Project (TA) are the two largest ultra-high-
energy cosmic ray (UHECR) observatories in the world. One obstacle in pursuing full-sky UHECR physics
is the apparent discrepancy in flux measured by the two experiments. This could be due to astrophysical
differences as Auger and TA observe the Southern and Northern skies, respectively. However, the scintillation
detectors used by TA have very different sensitivity to the various components of extensive air showers than
the water-Cherenkov detectors (WCD) used by Auger. The discrepancy could also be due to systematic effects
arising from the differing detector designs and reconstruction methods. The primary goal of the Auger@TA
working group is to cross-calibrate the approaches of the two observatories using in-situ methods. This is
achieved by placing a self-triggering micro-array, which consists of eight Auger surface detector stations,
with both WCDs and AugerPrime scintillators, within the TA array. Seven of the WCDs use a 1-PMT
prototype configuration and form a hexagon with the Auger spacing of 1.5 km. The eighth station uses a
standard 3-PMT Auger WCD, placed with a TA station at the center of the hexagon to form a triplet for
high-statistics, low-uncertainty, cross-calibration of instrumentation. Deployment of the micro-array took
place between September 2022 and August 2023, with data-taking foreseen by the Fall of 2023. Details on the
instrumentation and deployment of the micro-array, as well as its expected performance, trigger efficiencies,
and event rate will be presented. First data from individual stations will also be shown.
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1. Introduction

The Pierre Auger Observatory (Auger) [1] and the Telescope Array Project (TA) [2] are the
two largest experiments in the world that study ultra-high-energy cosmic rays (UHECR). They are
located in opposite hemispheres - the Pierre Auger Observatory in the Southern hemisphere and
the Telescope Array Project in the Northern hemisphere - and have collected data over the past 15
years, finding that their results are not entirely consistent. A notable discrepancy between the two
observatories is a difference in the measured energy scale of UHECR between the two experiments
shown in Figure 1. One aspect of this is a difference of approximately 9 %, falling within the
range of systematic uncertainties for both experiments, which until now has been resolved through
re-scaling. Even after re-scaling, a residual energy scale difference increasing with energy from
the the start of the suppression region and beyond remains and cannot be resolved easily [3].

Figure 1: Measured UHECR flux: Auger (black
circles) and TA (blue squares) (adapted from [3]).

There are two possible reasons for these dis-
crepancies. They could be caused by fundamen-
tal differences between the northern and southern
UHECR skies, they could originate from undeter-
mined discrepancies in the way data is processed by
the two experiments, or both. With an on-going and
increasing collaboration between Auger and TA, it
is now crucial to ascertain the cause of the ob-
served differences, to allow for further joint high-
level, full-sky analyses [4–6].

2. The Auger@TA Project

Both experiments use surface detectors (SDs) as their main statistics driver, but they employ
different designs. The Auger SD uses a Water Cherenkov detection (WCD) system to collect
light produced by charged particles above a certain energy threshold and is sensitive to both the
electromagnetic and muonic component of an air shower. The TA SD uses plastic scintillators
as particle counters which have an equal per-particle response to the electromagnetic and muonic
part of the shower. However, since the electromagnetic component of the shower often has a
higher particle count, the signal in scintillator detectors is often dominated by the electromagnetic
component. The Auger SD is calibrated to the signal of a muon passing vertically through the tank
(VEM), while the baseline calibration unit for the TA SD is the Minimum Ionizing Particle (MIP)
energy loss. To compare the two detectors, the Auger@TA project was formed, consisting of around
two dozen members from both experiments. The project aims to cross-calibrate the SDs of both
experiments using Auger detectors at the Telescope Array site and measuring the same showers.
The Auger@TA initiative has outlined goals in ascending order of required statistics which are
listed below and described in more detail in [7].

• Cross-calibration of Auger and TA SDs (station-by-station level)

• Event reconstruction comparison (event-by-event level)

• Test nature of 9 % energy scale difference by making a fully independent flux measurement

2



P
o
S
(
I
C
R
C
2
0
2
3
)
3
6
8

Auger@TA S. Mayotte

• Investigate discrepancy in flux suppression region with single event comparisons

The Auger@TA project is conducted in two stages, with Stage I spanning from 2018 to 2020 and
Stage II currently ongoing. Both stages will be reported on in this document, with a full publication
on Stage I following later this year.

3. Auger@TA Stage I: Station-level Comparisons

The initial stage of the Auger@TA project had the goal of cross-calibrating and comparing the
data from two co-located stations, one regular 3-PMT Auger (here Auger@TA) and one TA station,
positioned at the TA Central Laser Facility (CLF) [8, 9]. The TA station received a trigger signal
from the TA array and data from both stations were recorded. Over the course of the run-time
of Stage I, a total of 12 events, that were reconstructed by TA and passed their quality cuts, were
observed by the co-located Auger@TA and TA stations. For each of the 12 shared events, similar
events were selected from nearly 20 years of available Auger SD data, in order to analyze the
Auger@TA signal and compare it to both the Auger and TA array.

Event ID
𝐸TA

rec
(EeV)

\TA
rec

(◦)
𝑆TA

(MIP)
𝑆Auger@TA

(VEM)
𝑅Auger@TA

(m)
#𝐸𝑣𝑒𝑛𝑡𝑠Auger

Quantile
(%)

12 4.25 43.52 8.39 18.97 1078 9496 75.3
13 3.61 40.74 27.42 40.33 703 13807 26.7
34 4.57 38.44 18.51 25.12 1105 7505 89.5
49 4.58 38.28 38.83 56.49 811 7402 68.2
80 7.57 22.23 6.43 6.85 1580 1769 49.9
90 3.30 5.41 16.55 31.99 1016 2623 93.7
105 4.84 31.94 523.74 505.66 382 6073 40.5
111 4.96 39.92 8.33 6.71 1318 6317 17.8
119 4.93 32.64 51.48 104.31 775 5809 84.6
165 4.24 22.79 8.66 11.74 967 6334 2.3
181 3.24 16.29 68.70 86.16 355 9114 0.4
188 3.11 41.15 12.54 50.61 857 29429 94.3

Table 1: Overview of the 12 shared events observed in Stage I (see text
for details).

The TA reconstruction
values for energy and zenith,
𝐸TA

rec and \TA
rec , were used to

select all Auger events that
are within a 1𝜎 (𝐸rec) win-
dow of the TA reconstruction
values. In order to calculate
this 1𝜎 (𝐸rec) window the TA
reconstruction uncertainties as
reported by TA in [2] as well
as the energy and zenith uncer-
tainties from Auger as reported
in [10] and [1] are taken into
account and added in quadrature as

𝜎 (𝐸rec) =
√︂
𝜎

(
𝐸TA

rec

)2
+ 𝜎

(
𝐸

Auger
rec

)2
and 𝜎 (\rec) =

√︂
𝜎

(
\TA

rec

)2
+ 𝜎

(
\

Auger
rec

)2
(1)

The number of selected Auger events is listed for each of the 12 Stage I events in Table 1. An average
lateral distribution function (LDF) [11] is calculated from the Auger events in order to compare it
to the Auger@TA signal for each of the 12 Stage I events. If the Auger@TA signal is above the
average LDF this means that the 𝐸TA

rec used to select the Auger events was lower than what would be
needed to achieve a signal of that size in Auger. The opposite is true when the Auger@TA signal
is below the average LDF. An example can be seen in Figure 2.

To eliminate selection effects influencing further analysis the Auger events are weighted.
Selection effects originating from the UHECR spectrum are reduced by applying a spectrum
weight 𝑤𝐸,spec =

(
𝐸TA

rec/𝐸
Auger
rec

)−𝛾
, where 𝛾 is the spectral index using the values as reported in

[10] for the respective 𝐸TA
rec . Additionally for both 𝐸TA

rec and \TA
rec , weights (𝑤𝐸,gauss and 𝑤 \,gauss)
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are sampled from Gaussians with ` as the respective reconstruction value and 𝜎 is the respective
TA+Auger resolution on that value (as mentioned in Equation 1), in order to de-weight events
the further they are from the TA reconstruction values. Doing so leads to a combined weight of
𝑤Event = 𝑤𝐸,spec · 𝑤𝐸,gauss · 𝑤 \,gauss. Residual signals are calculated for each Auger event with
respect to the associated Auger@TA event as 𝑆res =

𝑆Auger−𝑆Auger@TA
𝑆Auger@TA

and their weighted distribution
is shown in Figure 2.
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Figure 2: Auger@TA Stage I event 49: Left: Signal from Auger@TA
station (orange data point) in relation to average Auger LDF (blue line and
error band). Right: Weighted distribution of 𝑆res.

The quantiles, shown in
Table 1, are calculated as
𝑞 = (𝐴under/𝐴total) ·100 (with
𝐴under =

∑
𝑤Event(𝑆res ≤

0) and 𝐴total =
∑
𝑤Event).

They describe the percent-
age of 𝑆Auger that were lower
than 𝑆Auger@TA. Due to
the very low statistics of 12
events, there is no clear trend
visible that would indicate
Auger@TA yielding different
results than Auger. This is also reflected in the fact that about half of the events are in the quantile
above 50 % and the other half is in the quantile below 50 %. There are only two events that are
significant with more than 90 % of the selected Auger events having a lower signal than the one
measured with Auger@TA. The analysis of Stage I data and its interpretation is currently being
finalized and will be reviewed by both collaborations prior to publication later this year.

4. Auger@TA Stage II: Extension to Event-level Comparisons

Auger@TA Stage II is an extension of Stage I, involving station-level comparisons as well
as direct comparisons of Auger and TA shower reconstructions. This study is necessary due to
significant differences in the two SD reconstruction methods. Auger and TA both use a shower
size estimator obtained from their respective LDFs. However, they differ in how they convert this
estimator into a normalized quantity. Auger uses a Constant Intensity Cut method [12, 13] while
TA relies on large shower simulation libraries [14]. For a comparison of reconstruction parameters,
more than two stations are needed.

Stage II will use seven 1-PMT prototype stations, previously used for R&D of a Northern
hemisphere Auger [15], arranged in a hexagon pattern, spaced 1.5 km apart, to enhance statistical
accuracy. The regular 3-PMT Auger station and the TA station from Stage I are placed at the center
of the hexagon as well, forming a triplet. The spacing in the triplet is approximately 11 meters,
which is the same distance used for doublet and triplet setups by Auger [16] and was chosen to
minimize reconstruction biases when using the fine-tuned reconstruction procedure developed for
the Auger Observatory. The central triplet will provide high statistics for studying signal correlations
between the 1- and 3-PMT Auger stations (in VEM) and the TA station (in MIP). This will allow
for cross-calibration and the extension of the Stage I study.
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4.1 The Auger@TA station & Communications System

The stations in the hexagon that were sourced from the 1-PMT prototype stations were retrofitted
to match regular Auger stations as closely as possible. The retro-fitting process and an overview of
the new components are described in detail in [7] and a schematic of one such Auger@TA station
can be seen in Figure 3. The only differences now remaining between a standard Auger and an
Auger@TA station are the number of PMTs (one central PMT), the form factor of the shell (minor),
and the custom-designed communications system using off-the-shelf components.
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Figure 3: Auger@TA station schematic.

All eight Auger-type stations are also out-
fitted with an AugerPrime Surface Scintillator
Detector (SSD) [17]. These SSDs expand on
the original scope of placing a micro-array in
TA and allow for further cross-calibration op-
tions.

The micro-array has a custom communica-
tions system that utilizes easily available com-
ponents, allowing for direct internet access to
the stations. YAGI antennas with Digi Xbee
Pro transceivers are used to ensure communi-
cation between the central triplet and the sta-
tions located on the outside of the hexagon. An
abstraction layer is implemented over the Xbee
line for internet access. Science data and com-
mands are still relayed via regular Auger protocols for debugging. A mobile 4G LTE wireless
modem is used for communication from the central node to the data server located at Case Western
Reserve University.

4.2 Status of the Micro-array & First Data

The Auger@TA micro-array has been deployed in the southwest corner of the TA array
overlooked by the Black Rock fluorescence detector (FD) (see Figure 4a). In September 2022, the
main stage of deployment was completed.

The initial deployment involved decommissioning the Stage I setup and inspecting all 8 sta-
tions before placing the detector stations and supporting equipment in the selected area. The
deployment site is shown in Figure 4a in relation to Black Rock FD. Water delivery occurred in
the weeks following deployment and station commissioning took place over subsequent trips this
year. Commissioning of the micro-array is nearing completion with most stations only missing
PMT bases (supply chain issues) and the SSDs, which need to be deployed after placing the bases
due to accessibility. However, the two Auger-type stations in the central triplet have been fully
commissioned and can be seen in Figure 4a. A first set of raw signal traces that has been obtained
from the Auger@TA station in the central triplet can be seen in Figure 4b. The remaining SSDs and
PMT bases will be placed at the beginning of August. A fully instrumented micro-array is expected
by the end of August 2023.
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(a) Top: Location of the 9 station micro-array within TA, also
showing the distance to the Black Rock FD. Bottom: Center
triplet and data acquisition comms station. Station names inspired
by [18].

240 260
Time Bin [25 ns]

0

100

200

300

400

500

600

A
D

C
 C

ou
nt

s

High Gain

240 260
Time Bin [25 ns]

50

55

60

65

70

75
Low Gain

Sam (CN)

(b) High gain (left) and low gain (right) channel
signal traces obtained from the WCD PMT of the
Auger@TA central triplet station.

Figure 4: Deployment site and first station data.

4.3 Expected Performance: Energy Resolution

To ensure the success of Auger@TA, a high-quality energy reconstruction is critical. However,
achieving this with only one hexagon is challenging.

Figure 5: Expected energy resolution: Left panels: All reconstructed events
(grey in bottom) compared to HQ selection (blue in bottom). Right panels:
Extrapolated SH energy resolution assuming TA core uncertainty of ≈ 100 m can
be used (detail in text).

Using the regu-
lar full Auger array
(FA) to benchmark
the single hexagon
(SH) performance by
running a simulation
study and comparing
all successfully recon-
structed events from
both simulation sets,
the energy resolution
of the single hexagon,
calculated over the
full simulated energy
range, is only 39.7 %
(see Figure 5 bot-
tom left) without any
quality cuts. It is
expected that events
with a shower foot-
print, or shower core
falling within a single
hexagon will have bet-
ter reconstruction on average, as can be verified in the top left plot in Figure 5. To select high-
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quality events, a cut is made on the distance of the reconstructed shower core to the central station
(𝑅center ≤ 1125 m). This high-quality selection cut greatly improves the energy resolution of the
single hexagon to 12.2 % (see also Figure 5 bottom left).

Reducing the number of usable events in the data set is, of course, not ideal, and such a
selection will only be applied for completely independent Auger@TA studies. Nonetheless, usually
events seen by the micro-array will also likely be observed by TA. Thus, using the TA shower core
reconstruction in the Auger@TA reconstruction can be done with minimal bias. A study of the
possible effect of this on the energy resolution can be seen in Figure 5 in the panels on the right.
Here the correlation between SH and FA simulation as a function of the the SH core reconstruction
uncertainty is investigated. To emulate what the result of using the TA core reconstruction to inform
the SH reconstruction could be, the SH-FA correlation is evaluated by looking only at events which
have a core reconstruction uncertainty of≈ 100 m or better. This value was chosen as it is equivalent
to the TA shower core uncertainty at low energies [14]. Doing so achieves an energy resolution of
13.1 %, which is comparable to the high-quality cut of 12.2 %.

4.4 Expected Performance: Event Rate

The single hexagon simulation set can be used to predict the yearly event rate when folding in
the UHECR spectrum for the micro-array (see Figure 6). To select a suitable region for measuring
the cosmic ray flux the reconstructed energy distribution was compared to the thrown Monte Carlo
and a flat region from 18.3 − 18.8 log10(𝐸/eV) was selected. The expected statistics in this region
are up to 65 events/yr when assuming that the TA core reconstruction can be used as explained
above. Assuming this event rate, a flux measurement could be made after two years with 8.7 %
statistical uncertainty, leading to a 1𝜎 level comparison between Auger and TA. Seven years would
be needed for a 2𝜎 level comparison unless lower energy events can be included. Systematic
uncertainties are still being quantified, and the simulations will be refined to optimize the study.
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Figure 6: Expected event rates: Both plots:
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5. Summary and Outlook

The Auger@TA project is currently the only effort that can identify differences in the Auger and
TA SD data by measuring the same showers with the two different detector types. This is needed
to determine if the energy scale discrepancies between the experiments are due to astrophysical
differences or unresolved data analysis discrepancies.

During Stage I of the project, 12 events were collected that were observed both with co-located
Auger and a TA stations as well as with the TA array itself. The analysis of these events, although
statistically limited, has already yielded positive results. There is currently no clear indication of
the Auger@TA station of Stage I giving different results as compared to the Auger SD array. A full
analysis of the Stage I data will be released later this year.

Stage II is currently in progress, with the micro-array almost fully instrumented and the first
data expected by the second half of 2023. The remaining parts of commissioning are the deployment
of bases and SSDs in the outer-hexagon stations. The first traces from one of the stations in the
central triplet are shown in this document. Simulation studies have been carried out to gauge the
expected performance of a single hexagon array and the results look promising, with a 1𝜎 level
comparison between Auger and TA potentially being possible after two years of data taking.
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