Deep-Learning-Based Cosmic-Ray Mass Reconstruction Using the Water-Cherenkov and Scintillation Detectors of AugerPrime

Niklas Langnera,* for the Pierre Auger Collaborationb

aRWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
bObservatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

Full author list: https://www.auger.org/archive/authors_icrc_2023.html
E-mail: spokespersons@auger.org

At the highest energies, cosmic rays can be detected only indirectly by the extensive air showers they create upon interaction with the Earth’s atmosphere. While high-statistics measurements of the energy and arrival directions of cosmic rays can be performed with large surface detector arrays like the Pierre Auger Observatory, the determination of the cosmic-ray mass on an event-by-event basis is challenging. Meaningful physical observables in this regard include the depth of maximum of air-shower profiles, which is related to the mean free path of the cosmic ray in the atmosphere and the shower development, as well as the number of muons that rises with the number of nucleons in a cosmic-ray particle.

In this contribution, we present an approach to determine both of these observables from combined measurements of water-Cherenkov detectors and scintillation detectors, which are part of the AugerPrime upgrade of the Observatory. To characterize the time-dependent signals of the two detectors both separately as well as in correlation to each other, we apply deep learning techniques. Transformer networks employing the attention mechanism are especially well-suited for this task. We present the utilized network concepts and apply them to simulations to determine the precision of the event-by-event mass reconstruction that can be achieved by the combined measurements of the depth of shower maximum and the number of muons.
1. Introduction

An event-by-event measurement of the masses of ultra-high-energy cosmic rays poses the potential to enable new insights regarding their sources. Observables related to the cosmic-ray mass include the atmospheric depth of shower maximum X_{max} which relates to the mean free path of the cosmic ray in the atmosphere and the shower development, as well as the number of muons R_{μ} that rises with the number of nucleons in the primary particle. At the Pierre Auger Observatory [1], X_{max} can be obtained with the Fluorescence Detector [2] which operates at moonless nights. Recently, deep learning approaches have been utilized to reconstruct X_{max} from measurements of the Surface Detector array (SD) [3], providing significantly increased statistics due to its duty cycle of close to 100% [4, 5]. The same approach can be used to reconstruct R_{μ} [6]. Currently, the Pierre Auger Observatory is undergoing an enhancement in form of the AugerPrime upgrade which will further increase the mass sensitivity of the SD. In particular, equipping the water-Cherenkov detectors (WCDs) of the SD with additional scintillators (SSDs) [7] will allow for a better separation of electromagnetic and muonic shower components [8–10].

In this contribution, we present an extension of the deep learning approach to reconstruct R_{μ} in addition to X_{max} on an event-by-event basis with a single neural network. We show how a Transformer-based deep neural network (DNN) can be applied to process the joint measurements of WCD and SSD traces. The DNN is trained and evaluated using simulations to estimate the improvement in mass sensitivity by the AugerPrime upgrade. Finally, introspection methods are applied to assess the individual importance of the WCDs and SSDs for the predictions of the DNN.

2. The AugerPrime Surface Detector

As part of the AugerPrime upgrade [8–10], each station of the SD is being equipped with multiple new components that both enhance and complement the WCDs. While the dynamic range of the WCDs is extended with the addition of a fourth photomultiplier (PMT) with a significantly smaller cathode surface, an additional radio antenna [11] and scintillation detector [7] provide new capabilities in the measurement of air showers. SSD modules are mounted on top of the WCDs and consist of two scintillator elements covering an area of 1.9 m2 each. With the SSD being especially sensitive to the electromagnetic shower component and the WCD measuring both the muonic and the electromagnetic components, a better separation between the two shower components can be achieved by combining the two measurements [8–10]. In addition, the Unified Board (UB) used for readout of the detectors is replaced by the Upgraded Unified Board [12] (UUB), resulting in a threefold increase of the readout frequency from 40 MHz to 120 MHz. In this work, the impact of the UUB and SSD on the cosmic-ray mass sensitivity with a Transformer-based DNN will be examined. The DNN is applied to the time traces recorded by the three large PMTs of the WCD and the PMT of the SSD. For WCD measurements with UB, a three-dimensional time trace with 120 time steps of 25 ns is used per station. The trace length increases to 360 time steps of 8.3 ns when using the UUB.
To extract information regarding the primary cosmic-ray mass from the highly complex measurements of the AugerPrime SD, a deep-learning approach is applied. The DNN consists of two parts which analyse the time traces on station-level and the whole shower footprint on a grid-level, respectively. A similar approach previously utilized recurrent networks (RNNs) in conjunction with convolutional networks (CNNs) to determine the depth of shower maximum X_{max} from WCD time traces [4, 5]. Here, the RNNs and CNNs are replaced by attention-based Transformers [13] and R_μ, the number of muons with removed energy- and zenith-dependence as seen on simulations, is introduced as an additional output of the DNN. In particular, an efficient Performer [14] is used to perform the time trace analysis, while the hexagonal grid that constitutes the shower footprint is processed by a Vision Transformer typically used for image recognition [15].

Preprocessing The DNN is provided with the inputs for each station: three WCD traces, one SSD trace, first particle arrival times and station states. The preprocessing is based on [4] with some adjustments due to the additional SSD traces and the higher sampling frequency of the UUB: A subgrid of 13×13 SD stations centered around the station with the largest signal is used to reduce memory requirements while keeping most of the signal. Given that large numerical fluctuations might hinder the training process of the DNN, both WCD and SSD time traces $S_i(t)$ are transformed with a logarithmic re-scaling following $\tilde{S}(t) = \log_{10}(S_i(t)/\text{VEM}+1)$. To normalize the time traces, both WCD and SSD are divided by their respective standard deviation of \tilde{S} in the training data. The particle arrival times are given relative to the central station and also normalized in the same way. While the DNN is trained on simulations, a clipping at high signal values simulates the saturation of real measurements. In addition, a small fraction of individual PMTs and stations are randomly set to zero to simulate non-functioning or non-existing stations and PMTs. Information regarding whether or not a measurement from a station is present is given to the DNN in form of the station states encoded by ones and zeros.

Time Trace Analysis At the first stage of the DNN, the above-mentioned Performer approach is used for a joint analysis of the WCD and SSD traces on a station-level, reducing the traces to 24...
characteristic values each. The attention mechanism of the Performer is capable of processing long sequences of 360 timesteps. In addition, it allows for an individual evaluation of the two trace types (self-attention) as well as their correlation (cross-attention). The self-attention accounts for the different working principles and sensitivities to different shower components of the two detectors while the cross-attention acknowledges their complementary nature when describing the same air shower. DNNs using only WCD traces are trained by performing two consecutive self-attentions.

Spatial Analysis of Shower Footprint For the spatial analysis, the output of the time trace analysis is combined with the information regarding the arrival times and station states, resulting in a vector of 50 values per station. A self-attention over all stations is performed using a Vision Transformer, where the DNN can incorporate geometrical conditions through learnable Embeddings. Afterwards, the total shower is reduced to 50 characteristic values by averaging over all stations.

Network Output Finally, two separate multi-layer-perceptrons transform the 50 values representing the whole air shower to the desired outputs of X_{max} and R_μ. The full DNN architecture is shown in Fig. 1. During the training process, the simulated true values of X_{max} and R_μ are used as targets for the network prediction. In an iterative process, the network parameters are adjusted to reduce the loss function, which is given by an element-wise mean squared error in both cases.

4. Performance on Simulations

The DNN is trained using more than 300,000 simulated air showers with a mixed composition of hydrogen, helium, oxygen and iron, generated with CORSIKA [17] utilizing the EPOS-LHC [18] hadronic interaction model. The test set consists of around 56,000 simulated showers not used for the training process to allow for an unbiased evaluation of the performance. The energy spectrum of the simulations follows E^{-1} with a range from 3 to 160 EeV (1EeV = 10^{18} eV). The zenith angle θ ranges from 0° to 65° and is uniformly distributed in $\cos^2(\theta)$. In Fig. 2, the DNN reconstruction is compared to Monte Carlo (MC) values, where X_{max} is given as energy-corrected by the elongation rate following $X_{\text{max}} = 56 \cdot \log_{10}(E/\text{EeV})$ to better reflect the mass sensitivity of the DNN. The correlation of $R_{\mu,\text{DNN}}$ with $R_{\mu,\text{MC}}$ increases noticeably from 0.612(3) to 0.679(2) through the inclusion of the UUB and SSD. The correlation of $X_{\text{max,\text{DNN}}}$ with $X_{\text{max,\text{MC}}}$ increases from 0.861(1) to 0.873(1). Fig. 2 on the right compares the event-by-event resolution of the network using WCD and SSD with UUB to the network using WCD with UB as a function of the energy reconstructed by the SD. The R_μ profits most notably from the inclusion of SSD and UUB, in particular at high energies. $\sigma(X_{\text{max}})$ is reduced to a lesser extent without a clear energy-dependence. It was found that the improvements of both R_μ and X_{max} rely mainly on the SSD, while the UUB provides only a small gain in performance. The much more noticeable improvement of R_μ matches the expectation that the combination of WCD and SSD is particularly well-suited to enable a better separation of the electromagnetic and muonic shower components. By combining the two predictions of the DNN into one observable Y, a powerful mass estimator can be obtained. Y is constructed by

\[Y = \hat{R}_\mu - 0.5 \cdot \hat{X}_{\text{max}}, \]

where the hat denotes a normalization $\hat{x} = [x - \text{mean}(x)] / \text{std}(x)$ that ensures that both \hat{R}_μ and \hat{X}_{max} cover a similar numerical range. Typical values obtained from simulations are used for the
mean and standard deviations to avoid a dependence on the specific test set. The distribution of Y for the proton and iron showers of the test set is shown in Fig. 3. The distributions of Y show strong mass separation with two peaks that feature only a small overlap. Performing a classification via a simple cut on Y as indicated by the dashed line and shaded areas in Fig. 3, 90% (87%) of the proton and iron showers of the test set are correctly classified as such by the WCD+SSD (WCD UB) DNN. The reliable identification of proton-induced air showers is a particularly relevant task when studying the cosmic-ray mass composition. This can be achieved by a high proton identification efficiency with as little misclassified iron showers as possible. To judge the ability of the DNNs, a Y cut is determined that results in a high proton identification efficiency of 80%. The probability of
Deep-Learning-Based Cosmic-Ray Mass Reconstruction with AugerPrime

Niklas Langner

Figure 4: Iron contamination (False Positive Rate) at 80% proton efficiency. (Left) As a function of SD-reconstructed energy E_{SD}. (Right) As a function of zenith angle θ.

Figure 5: Receiver Operating Characteristic (ROC) curve for proton identification. (Left) Zenith range from 0° to 65°. (Right) Zenith range from 0° to 30°.

an iron shower being misclassified as a proton shower at this specific cut is shown as a function of energy and zenith angle in Fig. 4. Overall, the iron misclassification is strongly reduced by the UUB and SSD, in particular by the SSD. Over the full energy- and zenith-range, the WCD+SSD DNN exhibits an iron contamination that is either similar or greatly reduced compared to the WCD (UB) DNN, with a typical reduction by a factor of around 2. By varying the cut on Y, different pay-offs regarding the efficiency and purity of the proton classification can be achieved. To evaluate the general classification capability of the DNNs, the True Positive Rate (TPR) and False Positive Rate (FPR) for proton identification are calculated while shifting the cut through the Y-distributions, resulting in Receiver Operating Characteristic (ROC) curves shown in Fig. 5. The WCD+SSD DNN consistently outperforms the DNNs using only the WCD as the red curve is always left of the blue curves. The ROC curves of the two WCD DNNs using the UB or UUB are very close to each other, indicating that the increase in mass separation relies mainly on the SSD. As shown in Fig. 5 on the right, the difference increases when limiting the zenith range to angles up to 30°, showing that the SSD provides a stronger improvement at low zenith angles, which is expected due to the geometric properties of the detector. Setting the FPR of proton identification to a value of only 1%, the WCD+SSD DNN still achieves a proton TPR of 71%, while the WCD DNNs reach a TPR of
5. Importance of Individual Detectors

While the inclusion of the SSD leads to an improved mass separation power of the DNN, it is still to be investigated how the DNN uses the additional input and to what degree the individual detectors influence the final predictions of R_μ and X_{max}. This question is answered by applying Integrated Gradients [19] (IG) to the DNN, an attribution method that provides individual importance values for input features with respect to a specific output. By comparing the IG values for the WCD and SSD traces to the total sum of IG for both sets of time traces, a relative importance of the two detectors can be obtained. The distribution of the importance of both detectors is shown in Fig. 6, calculated from 1000 showers of the test set. For both R_μ (Fig. 6 Left) and X_{max} (Fig. 6 right), the WCD is the most important of the two detectors, with a mean importance of 80% and 87%, respectively. Once again, the R_μ reconstruction is found to profit more strongly from the SSD, sometimes even relying more on the SSD than on the WCD. Limiting the zenith range to angles up to 30°, the importance of the SSD increases to 23% (15%) for the reconstruction of R_μ (X_{max}), confirming the zenith-dependence of SSD usage observed in Fig. 5. In addition to the IG sum of the traces, the individual contribution of each timestep can be analysed. The influence of the traces of the central station on the DNN reconstruction are shown for both outputs in Fig. 7. The opposite influence of the parts of the traces when comparing R_μ (Fig. 7 left) and X_{max} (Fig. 7 right) matches

Figure 6: Contribution to the DNN prediction by individual detector components. (Left) Integrated Gradients (IG) fraction for R_μ prediction. (Right) IG fraction for X_{max} prediction.

Figure 7: Contribution to the DNN prediction by individual parts of the time traces of the central station. (Left) Influence on R_μ prediction. (Right) Influence on X_{max} prediction.
the expectation that the two observables are anti-correlated. The different influences of the rising and falling edges also match the expectation of the rising edge being dominated by muons, while late muon peaks are observed to have a strong positive impact on \(R_\mu \).

6. Conclusion

The new components added to the surface detector stations of the Pierre Auger Observatory as part of the AugerPrime upgrade necessitate novel approaches to effectively analyse the highly complex measurements. A Transformer-based network is able to handle the increased trace length by the UUB, and in addition provides an efficient way to analyse the joint measurement of WCD and SSD. The network presented here processes the time traces on station-level using a Performer, followed by a Vision Transformer that analyses the whole shower footprint on a hexagonal grid. It was found on simulations that the additional measurements provided by the SSD improve both the \(X_{\text{max}} \) and \(R_\mu \) reconstruction, with a particular strong benefit for the \(R_\mu \) reconstruction. By combining both observables to obtain a single mass estimator \(Y \), a reasonable mass separation between proton and iron can be achieved, where the inclusion of the SSD strongly reduces the misclassification of iron. The performance gain by the SSD is particularly pronounced at lower zenith angles and attribution methods show that the DNN bases its prediction on the SSD with an importance of around 20\%, while the importance of the WCD is found to be roughly 80\%. The influence of individual parts of the time traces matches physics expectations, indicating the capability of the Transformer-based network to process the joint measurement in a meaningful way. In the future, developments like directly encoding arrival times in the time traces or using a large standard Transformer instead of the Performer as more resources become available are expected to further increase the performance.

References

Deep-Learning-Based Cosmic-Ray Mass Reconstruction with AugerPrime

The Pierre Auger Collaboration

Deep-Learning-Based Cosmic-Ray Mass Reconstruction with AugerPrime

Niklas Langner

F. Sarazin85, R. Sarmento72, R. Sato11, P. Savina91, C.M. Schäfer41, V. Scherini56,48, H. Schieler41, M. Schimaszek34, M. Schimp38, F. Schlüter41, D. Schmidt39, O. Scholten15,1, H. Schoorlemmer80,81, P. Schovánek32, F.G. Schröder80,41, J. Schulte42, T. Schulz41, S.J. Sciuotto3, M. Scornavacca7,41, A. Segreto53,47, S. Sehgal38, S.U. Shivashankara76, G. Sillit7, O. Sima73,6, F. Simon60, R. Smaj73, R. Śmida69, P. Sommers6, J.F. Soriano69, R. Squiratini10, M. Stadelmaier52, D. Stanca73, S. Stanić76, J. Stasielak7, P. Stassi36, S. Strážný39, M. Straub42, M. Suárez-Durán14, T. Suomijärvi37, A.D. Supanitsky7, Z. Svozilíková32, Z. Szadkowski71, A. Tapiá29, C. Taricco63,52, C. Timmermann81,80, O. Tkachenko41, P. Tobiska32, C.J. Todero Peixoto18, B. Tomè72, Z. Torrès36, A. Travaini10, P. Travnícek32, C. Trimarelli57,46, M. Tueros3, M. Unger41, L. Vaclavek33, M. Vacula33, J.F. Valdés Galicia68, L. Valore60,50, E. Varela64, A. Vásquez-Ramírez30, D. Veberič41, C. Ventura27, I.D. Vergara Quispe3, V. Verzi51, J. Vicha32, J. Vink33, J. Vlastimil32, S. Vorobiov76, C. Watanabe26, A.A. Watson5, A. Weindl41, L. Wiencke85, H. Wilczyński70, D. Wittkowsky38, B. Wundheiler7, B. Yue38, A. Yushkov32, O. Zapparrata14, E. Zas79, D. Zavrtanik76,77, M. Zavrtanik77,76

1 Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo–CONICET), San Carlos de Bariloche, Argentina
2 Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
3 IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
4 Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina
5 Instituto de Física de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina
6 Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), and Universidad Tecnológica Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina
7 Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
8 International Center of Advanced Studies and Instituto de Ciencias Físicas, ECyT-UNSAM and CONICET, Campus Miguelé – San Martín, Buenos Aires, Argentina
9 Laboratorio Atmósfera – Departamento de Investigaciones en Láseres y sus Aplicaciones – UNIDeF (CITEDEF–CONICET), Argentina
10 Observatorio Pierre Auger, Malargüe, Argentina
11 Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
12 Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina
13 University of Adelaide, Adelaide, S.A., Australia
14 Université Libre de Bruxelles (ULB), Brussels, Belgium
15 Vrije Universiteit Brussels, Brussels, Belgium
16 Centro Federal de Educación Tecnológica Celso Suckow da Fonseca, Petrópolis, Brazil
17 Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Brazil
18 Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil
19 Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brazil
20 Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
21 Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
22 Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
23 Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Campina Grande, Brazil
24 Universidade Federal do ABC, Santo André, SP, Brazil
25 Universidade Federal do Paraná, Setor Palotina, Palotina, Brazil
26 Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
27 Universidade Federal do Rio de Janeiro (UFRJ), Observatório do Valongo, Rio de Janeiro, RJ, Brazil
28 Universidade Federal Fluminense, EEMVR, Volta Redonda, RJ, Brazil
29 Universidad de Medellín, Medellín, Colombia
30 Universidad Industrial de Santander, Bucaramanga, Colombia
Deep-Learning-Based Cosmic-Ray Mass Reconstruction with AugerPrime

Niklas Langner

31 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
32 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
33 Palacky University, Olomouc, Czech Republic
34 CNRS-IN2P3, IJCLab, Université Paris-Saclay, Orsay, France
35 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université de Paris, CNRS-IN2P3, Paris, France
36 Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France
37 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
38 Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany
39 Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany
40 Karlsruhe Institute of Technology (KIT), Institut für Prozesstechnik und Werkstofftechnik, Karlsruhe, Germany
41 Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany
42 RWTH Aachen University, II. Physikalisches Institut A, Aachen, Germany
43 Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany
44 Universität Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany
45 Gran Sasso Science Institute, L’Aquila, Italy
46 INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
47 INFN, Sezione di Catania, Catania, Italy
48 INFN, Sezione di Lecco, Lecco, Italy
49 INFN, Sezione di Milano, Milano, Italy
50 INFN, Sezione di Napoli, Napoli, Italy
51 INFN, Sezione di Roma “Tor Vergata”, Roma, Italy
52 INFN, Sezione di Torino, Torino, Italy
53 Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
54 Osservatorio Astrofisico di Torino (INAF), Torino, Italy
55 Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Milano, Italy
56 Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy
57 Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy
58 Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy
59 Università di Milano, Dipartimento di Fisica, Milano, Italy
60 Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
61 Università di Palermo, Dipartimento di Fisica e Chimica “E. Segre”, Palermo, Italy
62 Università di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy
63 Università di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy
64 Benemérita Universidad Autónoma de Puebla, Puebla, México
65 Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPITTA-IPN), México, D.F., México
66 Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
67 Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
68 Universidad Nacional Autónoma de México, México, D.F., México
69 Universidad Nacional de San Agustín de Arequipa, Facultad de Ciencias Naturales y Formales, Arequipa, Peru
70 Institute of Nuclear Physics PAN, Krakow, Poland
71 University of Łódź, Faculty of High-Energy Astrophysics, Łódź, Poland
72 Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal
73 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
74 Institute of Space Science, Bucharest-Magurele, Romania
75 University Politehnica of Bucharest, Bucharest, Romania
76 Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia
77 Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia
Deep-Learning-Based Cosmic-Ray Mass Reconstruction with AugerPrime

Niklas Langner

Universidad de Granada and C.A.F.P.E., Granada, Spain
Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands
Stichting Astronomisch Onderzoek in Nederland (ASTRON), Dwingeloo, The Netherlands
Universiteit van Amsterdam, Faculty of Science, Amsterdam, The Netherlands
Case Western Reserve University, Cleveland, OH, USA
Colorado School of Mines, Golden, CO, USA
Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA
Michigan Technological University, Houghton, MI, USA
New York University, New York, NY, USA
University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE, USA
University of Wisconsin-Madison, Department of Physics and WIPAC, Madison, WI, USA
Louisiana State University, Baton Rouge, LA, USA
also at University of Bucharest, Physics Department, Bucharest, Romania
School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
now at Agenzia Spaziale Italiana (ASI). Via del Politecnico 00133, Roma, Italy
Fermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA
now at Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
now at ECAP, Erlangen, Germany
Max-Planck-Institut für Radioastronomie, Bonn, Germany
also at Kapteyn Institute, University of Groningen, Groningen, The Netherlands
Colorado State University, Fort Collins, CO, USA
Pennsylvania State University, University Park, PA, USA

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Belgium – Fonds de la Recherche Scientifique (FRS); Research Foundation Flanders (FWO); Brazil – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPE RJ); São Paulo Research Foundation (FAPESP) Grants No. 2019/10151-2, No. 2010/07359-6 and No. 1999/05404-3; Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC); Czech Republic – Grant No. MSMT CR LTT18004, LM2015038, LM2018102, CZ.02.1.01/0.0/0.0/16_013/0001402, CZ.02.1.01/0.0/0.0/18_046/00016010 and CZ.02.1.01/0.0/0.0/17_049/0008422; France – Centre de Calcul IN2P3/CNR S; Centre National de la Recherche Scientifique (CNRS); Conseil Régional Ile-de-France; Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS); Département Sciences de l’Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany – Bundesministerium für Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Württemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen; Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg; Italy – Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell’Università e della Ricerca (MUR); CETEMPS Center of Excellence; Ministero degli Affari Esteri (MAE), ICSC Centro Nazionale di Ricerca in High Performance Computing, Big Data
Deep-Learning-Based Cosmic-Ray Mass Reconstruction with AugerPrime

Niklas Langner

and Quantum Computing, funded by European Union NextGenerationEU, reference code CN_00000013; México – Consejo Nacional de Ciencia y Tecnología (CONACYT) No. 167733; Universidad Nacional Autónoma de México (UNAM); PAPIIT DGAPA-UNAM; The Netherlands – Ministry of Education, Culture and Science; Netherlands Organisation for Scientific Research (NWO); Dutch national e-infrastructure with the support of SURF Cooperative; Poland – Ministry of Education and Science, grants No. DIR/WK/2018/11 and 2022/WK/12; National Science Centre, grants No. 2016/22/M/ST9/00198, 2016/23/B/ST9/01635, 2020/39/B/ST9/01398, and 2022/45/B/ST9/02163; Portugal – Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE); Romania – Ministry of Research, Innovation and Digitization, CNCS-UEFISCDI, contract no. 30N/2023 under Romanian National Core Program LAPLAS VII, grant no. PN 23.21.01.02 and project number PN-III-P1-1.1-TE-2021-0924/TE57/2022, within PNCDI III; Slovenia – Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, N1-0111; Spain – Ministerio de Economía, Industria y Competitividad (FPA2017-85114-P and PID2019-104676GB-C32), Xunta de Galicia (ED431C 2017/07), Junta de Andalucía (SOMM17/6104/UGR, P18-GR-4314) Feder Funds, RENATA Red Nacional Temática de Astropartículas (FPA2015-68783-REDT) and María de Maeztu Unit of Excellence (MDM-2016-0692); USA – Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689; National Science Foundation, Grant No. 0450696; The Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; and UNESCO.