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At the highest energies, cosmic rays can be detected only indirectly by the extensive air showers
they create upon interaction with the Earth’s atmosphere. While high-statistics measurements
of the energy and arrival directions of cosmic rays can be performed with large surface detector
arrays like the Pierre Auger Observatory, the determination of the cosmic-ray mass on an event-
by-event basis is challenging. Meaningful physical observables in this regard include the depth
of maximum of air-shower profiles, which is related to the mean free path of the cosmic ray in
the atmosphere and the shower development, as well as the number of muons that rises with the
number of nucleons in a cosmic-ray particle.
In this contribution, we present an approach to determine both of these observables from combined
measurements of water-Cherenkov detectors and scintillation detectors, which are part of the
AugerPrime upgrade of the Observatory. To characterize the time-dependent signals of the two
detectors both separately as well as in correlation to each other, we apply deep learning techniques.
Transformer networks employing the attention mechanism are especially well-suited for this task.
We present the utilized network concepts and apply them to simulations to determine the precision
of the event-by-event mass reconstruction that can be achieved by the combined measurements of
the depth of shower maximum and the number of muons.
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1. Introduction

An event-by-event measurement of the masses of ultra-high-energy cosmic rays poses the
potential to enable new insights regarding their sources. Observables related to the cosmic-ray
mass include the atmospheric depth of shower maximum 𝑋max which relates to the mean free path
of the cosmic ray in the atmosphere and the shower development, as well as the number of muons
𝑅𝜇 that rises with the number of nucleons in the primary particle. At the Pierre Auger Observatory
[1], 𝑋max can be obtained with the Fluorescence Detector [2] which operates at moonless nights.
Recently, deep learning approaches have been utilized to reconstruct 𝑋max from measurements of
the Surface Detector array (SD) [3], providing significantly increased statistics due to its duty cycle
of close to 100% [4, 5]. The same approach can be used to reconstruct 𝑅𝜇 [6]. Currently, the
Pierre Auger Observatory is undergoing an enhancement in form of the AugerPrime upgrade which
will further increase the mass sensitivity of the SD. In particular, equipping the water-Cherenkov
detectors (WCDs) of the SD with additional scintillators (SSDs) [7] will allow for a better separation
of electromagnetic and muonic shower components [8–10].

In this contribution, we present an extension of the deep learning approach to reconstruct 𝑅𝜇

in addition to 𝑋max on an event-by-event basis with a single neural network. We show how a
Transformer-based deep neural network (DNN) can be applied to process the joint measurements
of WCD and SSD traces. The DNN is trained and evaluated using simulations to estimate the
improvement in mass sensitivity by the AugerPrime upgrade. Finally, introspection methods are
applied to assess the individual importance of the WCDs and SSDs for the predictions of the DNN.

2. The AugerPrime Surface Detector

As part of the AugerPrime upgrade [8–10], each station of the SD is being equipped with
multiple new components that both enhance and complement the WCDs. While the dynamic range
of the WCDs is extended with the addition of a fourth photomultiplier (PMT) with a significantly
smaller cathode surface, an additional radio antenna [11] and scintillation detector [7] provide new
capabilities in the measurement of air showers. SSD modules are mounted on top of the WCDs and
consist of two scintillator elements covering an area of 1.9 m2 each. With the SSD being especially
sensitive to the electromagnetic shower component and the WCD measuring both the muonic and
the electromagnetic components, a better separation between the two shower components can be
achieved by combining the two measurements [8–10]. In addition, the Unified Board (UB) used
for readout of the detectors is replaced by the Upgraded Unified Board [12] (UUB), resulting in a
threefold increase of the readout frequency from 40 MHz to 120 MHz. In this work, the impact
of the UUB and SSD on the cosmic-ray mass sensitivity with a Transformer-based DNN will be
examined. The DNN is applied to the time traces recorded by the three large PMTs of the WCD
and the PMT of the SSD. For WCD measurements with UB, a three-dimensional time trace with
120 time steps of 25 ns is used per station. The tracelength increases to 360 time steps of 8.3 ns
when using the UUB.
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Figure 1: Full architecture of the Transformer-based neural network. The Performer setup performs both
self-attention of the individual detectors as well as a cross-attention to analyze their correlations.

3. Transformer-Based Neural Network

To extract information regarding the primary cosmic-ray mass from the highly complex mea-
surements of the AugerPrime SD, a deep-learning approach is applied. The DNN consists of two
parts which analyse the time traces on station-level and the whole shower footprint on a grid-level,
respectively. A similar approach previously utilized recurrent networks (RNNs) in conjunction with
convolutional networks (CNNs) to determine the depth of shower maximum 𝑋max from WCD time
traces [4, 5]. Here, the RNNs and CNNs are replaced by attention-based Transformers [13] and
𝑅𝜇, the number of muons with removed energy- and zenith-dependence as seen on simulations, is
introduced as an additional output of the DNN. In particular, an efficient Performer [14] is used to
perform the time trace analysis, while the hexagonal grid that constitutes the shower footprint is
processed by a Vision Transformer typically used for image recognition [15].

Preprocessing The DNN is provided with the inputs for each station: three WCD traces, one SSD
trace, first particle arrival times and station states. The preprocessing is based on [4] with some
adjustments due to the additional SSD traces and the higher sampling frequency of the UUB: A
subgrid of 13 × 13 SD stations centered around the station with the largest signal is used to reduce
memory requirements while keeping most of the signal. Given that large numerical fluctuations
might hinder the training process of the DNN, both WCD and SSD time traces 𝑆𝑖 (𝑡) are transformed
with a logarithmic re-scaling following 𝑆(𝑡) = log10(𝑆𝑖 (𝑡)/VEM+1). To normalize the time traces,
both WCD and SSD are divided by their respective standard deviation of 𝑆 in the training data. The
particle arrival times are given relative to the central station and also normalized in the same way.
While the DNN is trained on simulations, a clipping at high signal values simulates the saturation
of real measurements. In addition, a small fraction of individual PMTs and stations are randomly
set to zero to simulate non-functioning or non-existing stations and PMTs. Information regarding
whether or not a measurement from a station is present is given to the DNN in form of the station
states encoded by ones and zeros.

Time Trace Analysis At the first stage of the DNN, the above-mentioned Performer approach is
used for a joint analysis of the WCD and SSD traces on a station-level, reducing the traces to 24
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characteristic values each. The attention mechanism of the Performer is capable of processing long
sequences of 360 timesteps. In addition, it allows for an individual evaluation of the two trace types
(self-attention) as well as their correlation (cross-attention). The self-attention accounts for the
different working principles and sensitivities to different shower components of the two detectors
while the cross-attention acknowledges their complementary nature when describing the same air
shower. DNNs using only WCD traces are trained by performing two consecutive self-attentions.

Spatial Analysis of Shower Footprint For the spatial analysis, the output of the time trace analysis
is combined with the information regarding the arrival times and station states, resulting in a vector
of 50 values per station. A self-attention over all stations is performed using a Vision Transformer,
where the DNN can incorporate geometrical conditions through learnable Embeddings. Afterwards,
the total shower is reduced to 50 characteristic values by averaging over all stations.

Network Output Finally, two separate multi-layer-perceptrons transform the 50 values represent-
ing the whole air shower to the desired outputs of 𝑋max and 𝑅𝜇. The full DNN architecture is shown
in Fig. 1. During the training process, the simulated true values of 𝑋max and 𝑅𝜇 are used as targets
for the network prediction. In an iterative process, the network parameters are adjusted to reduce
the loss function, which is given by an element-wise mean squared error in both cases.

4. Performance on Simulations

The DNN is trained using more than 300, 000 simulated air showers with a mixed composition
of hydrogen, helium, oxygen and iron, generated with CORSIKA [17] utilizing the EPOS-LHC [18]
hadronic interaction model. The test set consists of around 56, 000 simulated showers not used for
the training process to allow for an unbiased evaluation of the performance. The energy spectrum
of the simulations follows 𝐸−1 with a range from 3 to 160 EeV (1EeV = 1018eV). The zenith angle
𝜃 ranges from 0◦ to 65◦ and is uniformly distributed in cos2(𝜃). In Fig. 2, the DNN reconstruction is
compared to Monte Carlo (MC) values, where 𝑋max is given as energy-corrected by the elongation
rate following 𝑋max − 56 · log10(𝐸/EeV) to better reflect the mass sensitivity of the DNN. The
correlation of 𝑅𝜇,DNN with 𝑅𝜇,MC increases noticeably from 0.612(3) to 0.679(2) through the
inclusion of the UUB and SSD. The correlation of 𝑋max,DNN with 𝑋max,MC increases from 0.861(1)
to 0.873(1). Fig. 2 on the right compares the event-by-event resolution of the network using WCD
and SSD with UUB to the network using WCD with UB as a function of the energy reconstructed
by the SD. The 𝑅𝜇 profits most notably from the inclusion of SSD and UUB, in particular at high
energies. 𝜎(𝑋max) is reduced to a lesser extent without a clear energy-dependence. It was found
that the improvements of both 𝑅𝜇 and 𝑋max rely mainly on the SSD, while the UUB provides only a
small gain in performance. The much more noticeable improvement of 𝑅𝜇 matches the expectation
that the combination of WCD and SSD is particularly well-suited to enable a better separation of the
electromagnetic and muonic shower components. By combining the two predictions of the DNN
into one observable 𝑌 , a powerful mass estimator can be obtained. 𝑌 is constructed by

𝑌 = �̂�𝜇 − 0.5 · �̂�max, (1)

where the hat denotes a normalization 𝑥 = [𝑥 − mean(𝑥)] /std(𝑥) that ensures that both �̂�𝜇 and
�̂�max cover a similar numerical range. Typical values obtained from simulations are used for the
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Figure 2: 𝑅𝜇 and 𝑋max reconstruction on test dataset not used for training. (Left) DNN using WCD time
traces with UB. (Center) DNN using WCD and SSD time traces with UUB. (Right) Improvement in relative
resolution when comparing WCD+SSD (UUB) to WCD (UB).
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Figure 3: Distribution of 𝑌 for proton and iron constructed from DNN outputs. A cut at the dashed line
results in a classification accuracy of 90%.

mean and standard deviations to avoid a dependence on the specific test set. The distribution of 𝑌
for the proton and iron showers of the test set is shown in Fig. 3. The distributions of 𝑌 show strong
mass separation with two peaks that feature only a small overlap. Performing a classification via
a simple cut on 𝑌 as indicated by the dashed line and shaded areas in Fig. 3, 90% (87%) of the
proton and iron showers of the test set are correctly classified as such by the WCD+SSD (WCD UB)
DNN. The reliable identification of proton-induced air showers is a particularly relevant task when
studying the cosmic-ray mass composition. This can be achieved by a high proton identification
efficiency with as little misclassified iron showers as possible. To judge the ability of the DNNs, a
𝑌 cut is determined that results in a high proton identification efficiency of 80%. The probability of
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Figure 4: Iron contamination (False Positive Rate) at 80% proton efficiency. (Left) As a function of SD-
reconstructed energy 𝐸SD. (Right) As a function of zenith angle 𝜃.
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Figure 5: Receiver Operating Characteristic (ROC) curve for proton identification. (Left) Zenith range from
0◦ to 65◦. (Right) Zenith range from 0◦ to 30◦.

an iron shower being misclassified as a proton shower at this specific cut is shown as a function of
energy and zenith angle in Fig. 4. Overall, the iron misclassification is strongly reduced by the UUB
and SSD, in particular by the SSD. Over the full energy- and zenith-range, the WCD+SSD DNN
exhibits an iron contamination that is either similar or greatly reduced compared to the WCD (UB)
DNN, with a typical reduction by a factor of around 2. By varying the cut on 𝑌 , different pay-offs
regarding the efficiency and purity of the proton classification can be achieved. To evaluate the
general classification capability of the DNNs, the True Positive Rate (TPR) and False Positive Rate
(FPR) for proton identification are calculated while shifting the cut through the 𝑌 -distributions,
resulting in Receiver Operating Characteristic (ROC) curves shown in Fig. 5. The WCD+SSD
DNN consistently outperforms the DNNs using only the WCD as the red curve is always left of the
blue curves. The ROC curves of the two WCD DNNs using the UB or UUB are very close to each
other, indicating that the increase in mass separation relies mainly on the SSD. As shown in Fig. 5
on the right, the difference increases when limiting the zenith range to angles up to 30◦, showing
that the SSD provides a stronger improvement at low zenith angles, which is expected due to the
geometric properties of the detector. Setting the FPR of proton identification to a value of only 1%,
the WCD+SSD DNN still achieves a proton TPR of 71%, while the WCD DNNs reach a TPR of
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Figure 6: Contribution to the DNN prediction by individual detector components. (Left) Integrated Gradients
(IG) fraction for 𝑅𝜇 prediction. (Right) IG fraction for 𝑋max prediction.
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Figure 7: Contribution to the DNN prediction by individual parts of the time traces of the central station.
(Left) Influence on 𝑅𝜇 prediction. (Right) Influence on 𝑋max prediction.

61% with the UUB and 58% with the UB, once again showing the strong impact of the SSD.

5. Importance of Individual Detectors

While the inclusion of the SSD leads to an improved mass separation power of the DNN, it is still
to be investigated how the DNN uses the additional input and to what degree the individual detectors
influence the final predictions of 𝑅𝜇 and 𝑋max. This question is answered by applying Integrated
Gradients [19] (IG) to the DNN, an attribution method that provides individual importance values
for input features with respect to a specific output. By comparing the IG values for the WCD and
SSD traces to the total sum of IG for both sets of time traces, a relative importance of the two
detectors can be obtained. The distribution of the importance of both detectors is shown in Fig. 6,
calculated from 1000 showers of the test set. For both 𝑅𝜇 (Fig. 6 Left) and 𝑋max (Fig. 6 right),
the WCD is the most important of the two detectors, with a mean importance of 80% and 87%,
respectively. Once again, the 𝑅𝜇 reconstruction is found to profit more strongly from the SSD,
sometimes even relying more on the SSD than on the WCD. Limiting the zenith range to angles
up to 30◦, the importance of the SSD increases to 23% (15%) for the reconstruction of 𝑅𝜇 (𝑋max),
confirming the zenith-dependence of SSD usage observed in Fig. 5. In addition to the IG sum of
the traces, the individual contribution of each timestep can be analysed. The influence of the traces
of the central station on the DNN reconstruction are shown for both outputs in Fig. 7. The opposite
influence of the parts of the traces when comparing 𝑅𝜇 (Fig. 7 left) and 𝑋max (Fig. 7 right) matches
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the expectation that the two observables are anti-correlated. The different influences of the rising
and falling edges also match the expectation of the rising edge being dominated by muons, while
late muon peaks are observed to have a strong positive impact on 𝑅𝜇.

6. Conclusion

The new components added to the surface detector stations of the Pierre Auger Observatory
as part of the AugerPrime upgrade necessitate novel approaches to effectively analyse the highly
complex measurements. A Transformer-based network is able to handle the increased trace length
by the UUB, and in addition provides an efficient way to analyse the joint measurement of WCD
and SSD. The network presented here processes the time traces on station-level using a Performer,
followed by a Vision Transformer that analyses the whole shower footprint on a hexagonal grid.
It was found on simulations that the additional measurements provided by the SSD improve both
the 𝑋max and 𝑅𝜇 reconstruction, with a particular strong benefit for the 𝑅𝜇 reconstruction. By
combining both observables to obtain a single mass estimator 𝑌 , a reasonable mass separation
between proton and iron can be achieved, where the inclusion of the SSD strongly reduces the
misclassification of iron. The performance gain by the SSD is particularly pronounced at lower
zenith angles and attribution methods show that the DNN bases its prediction on the SSD with
an importance of around 20%, while the importance of the WCD is found to be roughly 80%.
The influence of individual parts of the time traces matches physics expectations, indicating the
capability of the Transformer-based network to process the joint measurement in a meaningful way.
In the future, developments like directly encoding arrival times in the time traces or using a large
standard Transformer instead of the Performer as more resources become available are expected to
further increase the performance.
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