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The JEM-EUSO program is focused on observations of Ultra High Energy Cosmic Rays (UHE-
CRs) from space. For this purpose, a series of detectors based on multi-anode photomultiplier
tubes with a time resolution of the order of 𝜇s have been developed. The detectors work in the UV
band to search for ultra-fast signals produced in the Earth’s atmosphere during an Extensive Air
Shower (EAS) development. Since 2014, various signals have been detected by ground-, ballon-
and space-based detectors. A single photodetector module consists of a focal surface with a matrix
of 36 multi-anode photomultiplier tubes containing 2304 pixels. The detector’s structure allows
probing it during the mission if a point-like source emitting in a UV band is in the field of view. In
this work, we present the idea and results of calibration of the JEM–EUSO detectors using signals
from stars registered during sky observations from the ground. Registered signals can be used for
the absolute calibration of the detectors and for testing the detector condition during observations.
The presented analysis is based on the data taken by the EUSO-TA and EUSO-TA2 experiments.
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1. Introduction

The EUSO-TA experiment is a ground-based detector in the JEM-EUSO scientific program.
It is a small fluorescence telescope located in Telescope Array (TA) [1] site in front of Black
Rock Mesa fluorescence station (BRM-TA FD) in the Utah desert. The focal surface contains one
photodetector module (PDM) composed of 36 Hamamatsu R11265-M64 Multi-Anode Photomul-
tipliers (MAPMTs), resulting in a matrix of 2304 pixels. One segment of 2 × 2 MAPMTs creates
an Elementary Cell (EC) with a dedicated HVPS module. The detector can observe the night sky
to search for Ultra High Energy Cosmic Rays being triggered by TA. More details can be found
in [2]. Since its installation in 2013, the detector has proved helpful for testing and developing
EUSO detectors and its firmware. In 2022, an upgraded version of the so-called EUSO-TA2 was
set up at the BRM-TA FD site. PDM has been upgraded with a new high voltage unit (HVPS),
while the whole optical system in the old design has been conserved. The focal surface of the new
PDM is presented in figure 1.

Figure 1: Photo-Detector Module of EUSO-TA2 experiment. View from the focal surface (left) and the
whole PDM with a visible PDM board at the bottom (right). The focal surface comprises the matrix of 36
MAPMTs divided into 9 ECs. White cables are connected to HVPS and LVPS modules during measurements.
The detector is placed at about 43 cm from the first lens.

The EUSO-TA optical system comprises two Fresnel lenses produced from UV-transmitting
polymethyl-methacrylate (PMMA) with about 40% overall efficiency. The width of the PSF
increases with the distance from the optical axis due to optical aberration. The EUSO-TA detector,
including optics, has been implemented in OffLine [3] and ESAF [4] frameworks to perform related
simulations. In figure 2, we present an example of the PSF simulated with OffLine software to
illustrate its dependency on the position on the focal surface. A portion of the signal that can be
registered in a defined area on the focal surface due to the PSF is one of the critical parameters
during absolute calibration with a point-like signal. More details regarding EUSO-TA optics design
can be found in [5] and [6].

2. Measurements and data structure

EUSO-TA detector in the first version was operating in single photons counting mode, and
the number of photons is used to be read from each pixel and reset every 2.5𝜇𝑠, which defines
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Figure 2: EUSO-TA point spread function simulated with OffLine software [3]. In the left top panel,
we show the distribution of simulated photons reaching the focal surface. The simulation includes 100 000
photons at 355 nm hitting the first lens of the detector at 5.4◦ of incident theta angle. The black grid represents
the position of single pixels. Individual PMTs as clusters of 64 pixels and ECs as clusters of 4 PMT can
be recognized. The top right plot shows the same result taking into account only the number of counts in
individual pixels. Photons hitting the gaps between PMTs or ECs are discarded. Four plots in the bottom
panel present simulated distributions of photons on the focal surface for different incident angles: 0◦, 2◦, 4◦

and 6◦. More detailed analysis shows that even for 6◦ of incident angle, more than 50% of the signal should
be placed in the area of 3x3 pixels.

Gate Time Unit (GTU). The dead time is about 0.2𝜇𝑠 in this case. In 2015–2016, the detector was
externally triggered for CR events by the TAFD station with an average trigger rate of about 4 Hz.
An upgraded version of the PDM in EUSO-TA2 operating since 2022 allows for data acquisition in
three-time scales: D1, D2 and D3 with integration times of 2.5 𝜇s, 320 𝜇s and 40.96 ms respectively
and without an external trigger. In this work, we focus on the calibration of the detector using point-
like signals emitted by stars in the field of view. We present mainly EUSO-TA data, but to test
algorithms, we also use the D3 acquisition mode of EUSO-TA2, which allows us to limit the dead
time in a significant way.
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3. Data processing

The data analysis process to extract signals from stars has been described in detail in [7].
Working on counts summed over 128 GTUs, we were able to fit tracks of stars in FoV with M𝐵

< 5.5𝑚 for EUSO-TA and M𝐵 < 6.4𝑚 for EUSO-TA2. An example of this fitting is presented in
figure 3. Based on the fit, the position of the signal on the focal surface can be determined with an
accuracy of about 0.4 pixels. If the track is close to the centre of a specific pixel, information about
the background and signal level can be extracted from the light curve calculated for a 3x3 pixels
area with the centre at the selected pixel.
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Figure 3: Process of data analysis for a bright star HIP100453 with an apparent magnitude of 2.23𝑚. Black
points in the left figure show positions of the star on the focal surface fitted with the Moffat function within
one PMT. Then, the red line represents the star’s track on the focal surface. At this stage, we can choose a
pixel whose centre is placed at a distance not longer than 0.3 pixels from the track for further analysis. In the
next step, we calculate the light curve of counts in a 3x3 pixels area around the chosen pixel. An example
is presented on the right plot. Red and blue colours on the lightcurve represent the background and signal
plus background ranges, respectively. The difference between average counts in those two periods gives the
number of registered photons from the star.

The signal has been equalized between all pixels before the fitting procedure. For equalization,
we used analysis of signal distributions measured in background conditions before and/or after star
transition. An example of signal distribution in one pixel with 2.5𝜇𝑠 GTU is presented in Figure 4
(left). After equalization, the signal in different pixels taken with the same background level is
similar, but the efficiencies of various pixels can be different. Due to this, we introduce calibration
constants 𝐶 (𝑥, 𝑦) depending on the position on the focal surface. This factor describes the signal
fraction registered in a 3× 3 area around the pixel determined by 𝑥 and 𝑦 coordinates, including the
PSF and an unknown part of the pixel’s efficiency.

4. Stars as calibration sources

In the analysis, we treat stars as point-like sources with known parameters. To express an
expected number of registered photons 𝑁 (𝑥, 𝑦,Θ) coming from a star for a fixed observation angle
Θ we use the following formula:

𝑁 (𝑥, 𝑦,Θ) = 𝐶 (𝑥, 𝑦)
∫ ∞

0
𝑇 (𝜆,Θ)Φ(𝜆)𝑃(𝜆)𝑑𝜆, (1)
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Figure 4: Distribution of signal in one pixel of EUSO-TA2 detector measured during the same period in
three time-scales: D1 with acquisition time of 2.5 𝜇s - the same as for EUSO-TA (left), D2 with 320 𝜇s
(center) and D3 with 40.96 ms (right). All distributions are normalized. In D1 mode signal is well described
with Poisson distribution, while in D2 and D3, we use the Gaussian one due to summed counts over a longer
period.

where𝑇 (𝜆,Θ) denotes atmospheric transmittance,Φ(𝜆) is starlight flux at the top of the atmosphere,
𝑃(𝜆) represents known detector parameters and 𝐶 (𝑥, 𝑦) is a matrix of the wavelength-independent
and position-dependent calibration constants.

Atmospheric transmission 𝑇 (𝜆,Θ) for the defined observation angle is calculated using li-
bRadTran package [8], considering local atmospheric conditions at the BRM site. To calculate the
number of photons from the star at the top of the atmosphere Φ(𝜆), we used Pickles stellar spectral
flux library [9] renormalized for each star with its apparent magnitude. To recognize stars in the
FoV, we used HIPPARCOS catalogue [10]. Known detector parameters 𝑃(𝜆) include optical system
efficiency and the size of the telescope lenses, quantum and collection efficiency of MAPMTs and
dead time of the detector. In the first step of the analysis, data is corrected for the pile-up effect [11].

5. Results

In this work, we analyzed 22 stars observed by the EUSO-TA telescope in 2015 and 2016.
Additionally, we performed the first analysis of the data taken by EUSO-TA2 in 2022 and 2023.
Calculated matrix of calibration constants 𝐶 (𝑥, 𝑦) can differ for data sets taken during different
EUSO-TA campaigns due to different optical axis positions, focusing, pixel gains and other pa-
rameters. Below, we present results for data taken by EUSO-TA in October 2015. By fitting the
measured signal to calculated predictions, we obtained the 𝐶 (𝑥, 𝑦) matrix presented in figure 5
(left). For 81 pixels, we obtain distribution ranging from 48% to 82% with an average of about 66%
(figure 5 right). Using calculated factors, a comparison between predicted and detected signals is
presented in Figure 6 (left) for four stars with different magnitudes, measured at different elevation
angles. Predictions include all parameters from the right side of equation (1) excluding 𝐶 (𝑥, 𝑦),
which is applied in the data, for each point separately, according to its position on the focal surface
during observation. An average value of the calibration constant from Figure 5 has been used to
plot average detector efficiency as a function of wavelength presented in Figure 6 right. The shape

5



P
o
S
(
I
C
R
C
2
0
2
3
)
3
8
6

Calibration of the EUSO-TA with stars Zbigniew Plebaniak

is determined mainly by BG3 filter characteristics and the quantum efficiency of MAPMTs. The
detector reaches maximum efficiency of (4.46±0.55)% at 380 nm. The average efficiency was esti-
mated as (2.74±0.33)% and (4.10±0.49)% in the ranges 250-500 nm and 300-400 nm respectively.
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Figure 5: Calculated calibration factors 𝐶 (𝑥, 𝑦) at different positions on the focal surface (left) for stars
measured in October 2015 and its distribution fitted with the Gaussian form (right). The mean value of (66.1
± 8.1)% can be used to calculate the average efficiency of the detector.
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Figure 6: The left plot shows a comparison between measured (points) and predicted (lines) signals for four
stars with different intensities. Points have been corrected by obtaining 𝐶 (𝑥, 𝑦) factors depending on the
position on the focal surface during measurement. Lines represent expected signals assuming a PSF that
allows to fit full signal in 3 × 3 pixels area. The right plot shows the calculated efficiency of the EUSO-TA
detector, assuming an average value of𝐶 (𝑥, 𝑦) as 66.1%. Calculated detector efficiency reaches the maximum
of 4.46% at about 380nm.
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6. Conclusions

In the presented analysis, we have considered signals from 22 stars detected by the EUSO-TA
detector in 2015–2016 and a few stars observed by the upgraded version - EUSO-TA2 in 2022–2023.
We described the method of performing the absolute calibration of a multi-pixel detector using UV
light from stars as a reference signal. Based on data taken in October 2015, we obtained calibration
factors of 81 out of 2304 pixels on the focal surface. The EUSO-TA detector average efficiency has
been calculated as (4.10±0.49)% in the range 300 - 400 nm, consistent with previous estimations
done with calibration lasers and LEDs. The presented method provides valuable information
about detector response during operation. Application of the presented analysis to EUSO-TA2 and
EUSO-SPB2 data taken at the TA site will allow for estimating those detectors’ efficiencies and
help improve the method. Such operations can be performed for future EUSO missions during field
tests in Utah. The possibility of pointing the balloon-borne telescope towards stars during flight
can also be considered.
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