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HAWC is a ground-based observatory consisting of 300 water Cherenkov detectors, which observes
the extensive air showers induced by cosmic rays from some TeV to a few PeV and, in particular,
gamma rays from 300 GeV to more than 100 TeV. One of the crucial features required for a detector
of extensive air showers is the estimation of the primary energy of the events to study the spectra
of cosmic and gamma rays. For HAWC there are currently two gamma-ray energy estimators: one
relies on a ground density parameter, while the other utilizes an artificial neural network. For the
cosmic ray energy estimation, there is only one estimator based on maximum likelihood procedures
and measurements of the lateral charge distribution of the events. It is worthwhile to update the
cosmic-ray energy estimator due to recent improvements of the extensive air shower offline-
reconstruction techniques in HAWC. Therefore, we implemented an artificial neural network to
reconstruct the primary energy of hadronic events trained with several observables that characterize
the air showers. We trained several models and evaluated their performance against the existing
cosmic ray energy estimator. In this work, we present the features and performance of these
models.
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1. Introduction

The High-Altitude Water Cherenkov (HAWC) gamma-ray observatory is located at an altitude
of 4100 m above sea level on the Sierra Negra volcano in Puebla, Mexico. HAWC consists of an
array of 300 water Cherenkov detectors, each instrumented with four photomultiplier tubes (PMTs),
covering an area of 22000 m2 [1]. HAWC operates nearly daily with a duty cycle exceeding 95%,
and it has a detection rate of approximately 25 kHz. Given that the majority of the detected shower
are cosmic ray, HAWC contributes significantly to the field. For instance, it can investigate the light
mass group as reported in [2, 3], or the cosmic-ray anisotropy [4]. One crucial factor in conducting
such analyses is having an energy estimator for the primary particle. In previous works, it was
used an energy estimator based on a maximum likelihood procedure and the measurements of the
lateral charge distribution of the PMT with signals during the event (hereafter, we will refer to
this estimation procedure as Likelihood) [2]. With recent improvements in the offline analysis of
the HAWC software for shower reconstruction, the cosmic-ray energy estimator needs an update.
To accomplish this task, in this contribution, we explore machine learning techniques, which will
enable us to build a data-driven model. Section 2 provides details of our model and its training,
while, in section 3, the performance of the best trained model is presented and its is compared with
the results for the likelihood technique. Finally, we summarize the results of this contribution and
provide an overview of our future work (in section 4).

2. Trained model sets

For our analysis, we employed Monte Carlo simulation, which were computed using the standard
procedure of HAWC. The CORSIKA package [5] (v740) was used to simulate the interaction
between a primary particle and the atmosphere, as well as the resulting extensive air shower.
FLUKA [6] and QGSJet-II-04 [7] were employed as our low and high-energy hadronic interaction
models, respectively. Eight specie1 were simulated using a power-law energy spectrum, ranging
from 5 GeV to 2 PeV, with an spectral index of −2. The GEANT4 [8] package was utilized to
simulate the interaction between secondary particles and the HAWC detector. Finally, the official
HAWC’s software was employed to reconstruct all shower event.

To train the neural networks, we utilized the TMVA package [9] of ROOT [10]. The architecture
of the neural network is defined as 14:10:10:1, where each number represents the number of
artificial neurons in each layer. The first layer has fourteen neurons, which is the same number of
input variables used. These variables contain information such as the lateral distribution charge
(footprint) of the shower, its direction, the percentage of PMTs activated, and the distance of the
shower core from the HAWC center. The second and third layers are the hidden layers with ten
neurons each, and they use a sigmoid activation function. Finally, the last layer consists of one
output neuron used to provide the prediction of the primary particle energy in units of log10(𝐸/GeV).
Among various model trained with different input variables, the selected fourteen variables yielded
the best results. For training, we established 1000 epochs and utilized the Broyden-Fletcher-
Goldfarb-Shannon (BFGS) learning model [9]. During the training stage, two-thirds of the total

1proton, helium, carbon, oxygen, neon, magnesium, silicon and iron
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proton events were used, while the remaining one-third of proton events were reserved for testing,
approximately 5 millon of proton event were simulated. Protons were chosen for training the model
because of their relative abundances in the intensity of cosmic rays, which is approximately 90% of
all detected particles [11].

Multiple sets of neural networks were trained, with each network operating on a different binning
scheme. The binning scheme involves two parameters: the fractional signal of activated PMTs
during the event ( 𝑓hit) and the position of the shower core relative to HAWC (for events with shower
cores inside HAWC, we use the label in-HAWC, and for events at the border or outside HAWC, the
label off-HAWC). Below is a description of three neural network sets used in this work:

• 1st set: A single trained network that predicts the energy for events, with shower core inside
and outside of HAWC.

• 2nd set: Two trained networks are utilized. One network predicts the energy for in-HAWC
events, while the other network estimates the energy for off-HAWC events.

• 3rd set: Three trained networks are employed for different 𝑓hit bins. The first network is
designed for the low 𝑓hit bin range (2.7% - 22%), the second network for the medium 𝑓hit bin
range (22% - 47%), and the third network for the high 𝑓hit bin range (> 47%).

The optimal model is saved in a file with XML format after the training stage is completed.
With this file, we can predict the energy for any event. To evaluate the model’s performance, we
use one-third of the total proton events as a test data set and compare the predictions. Figure 1
illustrates the distribution of reconstructed energy versus true energy for the vertical events (zenith
angle < 17◦) of the three model sets and the Likelihood. The best model is characterized by most
events being closer to the identity line (solid dark line), indicating a more accurate prediction. From
this results, we found that the third neural network set has the best performance (Figure 1d). The
Likelihood exhibits two undesired behaviors, both at high energies (> 100 TeV). The first one is an
underestimation of high-energy events, while in the second one is a loss of sensitivity at energies
close to 1 PeV and above (resulting in a flat region in the top of Figure 1a).

3. Testing stage

To assess the robustness of our neural network models for other cosmic ray nuclei in the detector,
we conducted a test using the iron-induced shower (a heavier component). In figure 2, we compare
the resulting performances for the Likelihood and the third neural network set. We observe that, in
the case of iron nuclei, the Likelihood exhibits the same behavior as for the case of proton specie.
However, the neural network set does not exhibit this behavior at high energies.

In order to quantify and evaluate the performance of the models, we calculate the bias, which
is defined as the difference between the reconstructed and true energy values, both in logarithmic
scale.

bias = Δ log10(E) = log10 (EReco/GeV) − log10 (ETrue/GeV) (1)
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(a) Likelihood (b) 1st Neural Network set

(c) 2nd Neural Network set (d) 3rd Neural Network set

Figure 1: A density heatmap is shown, illustrating the true energy versus the reconstructed energy using the
Likelihood method (a), and the 1st, 2nd, and 3rd Neural Network sets (b, c, and d respectively) for testing
proton-induced showers. The identity line is depicted by the black line.

(a) likelihood (b) 3rd Neural Network set

Figure 2: A density heatmap is shown, illustrating the true energy versus the reconstructed energy using
the Likelihood method (a) and the 3rd Neural Network set (b) for iron-induced showers. The identity line is
depicted by the black line.
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(a) Proton-induced showers

(b) Iron-induced showers

Figure 3: A comparison is made between the bias associated with HAWC’s official energy estimator
Likelihood (red) and the 3rd Neural Network set (black) for two specie: (a) proton and (b) iron nuclei.

We report the mean of the bias distribution for each quarter of a decade stating from 2.0 (100 GeV).
These results are presented in Figure 3, considering the proton and iron-induced showers. The
bias indicates the proximity of the predictions to the true energy. Between 10 TeV and 100 TeV,
most events show a reconstructed energy value lower than the true one for both methods. Between
100 TeV and 1 PeV, both estimators demonstrate an excellent reconstruction, which is consistent
with Figures 1 and 2, where the majority of events (indicated by the red zone) are close to the
identity line. Finally, beyond 1 PeV, the neural network aligns the events with the identity line, as
the bias approaches zero instead of having a significant offset, unlike the Likelihood estimator in
the flat region.

4. Discussion and Conclusions

In this contribution, we reported the results for the energy estimator of cosmic-ray induced air
showers with three neural network sets trained using only proton specie. These sets share the
same configuration parameters, such as architecture, number of epochs, and input variables, among
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characteristics. The difference lies in the number of networks trained within each set. The best
model set is achieved when a network is specifically focused on reconstructing events within low,
medium, and high fractional hit bins. This set exhibits significant improvements compared to the
Likelihood model. In particular, the neural network model reduces the bias at energies close to 1
PeV and also reduce the size of the fluctuation at high energies. We obtain the same behavior when
a heavier component, iron nuclei, is used.

Upon exploring the reconstruction of the iron event in the testing stage, it was concluded that it
is advisable to train the model with multiple specie instead of just one. This is because there is an
offset observed in estimated primary energy with respect to the true value, which is also observed
with the Likelihood model. In general, the conclusion of the present study is that the third neural
network set proves to be the superior model in comparison with the other ones explored in this
work, showing notable improvement, particularly at high energies.

We will explore adding more variables that improve the reconstruction or training the model with
a broader range of nuclei instead of relying solely on protons. This approach may help decrease
bias in the reconstruction process. Another possibility is to train the models to focus on specific
zenith angle bands or explore more sophisticated methods such as deep learning.
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