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Mini-EUSO is a wide Field-of-View (FoV, 44◦) telescope currently in operation from a nadia-facing
UV-transparent window in the Russian Zvezda module on the International Space Station (ISS).
It is the first detector of the JEM-EUSO program deployed on the ISS, launched in August 2019.
The main goal of Mini-EUSO is to measure the UV emissions from the ground and atmosphere,
using an orbital platform. Mini-EUSO is mainly sensitive in the 290-430 nm bandwidth. Light is
focused by a system of two Fresnel lenses of 25 cm diameter each on the Photo- Detector-Module
(PDM), which consists of an array of 36 Multi-Anode Photomultiplier Tubes (MAPMTs), for a
total of 2304 pixels working in photon counting mode, in three different time resolutions of 2.5 𝜇s,
320 𝜇s, 40.96 ms operation in parallel. In the longest time scale, the data is continuously acquired
to monitor the UV emission of the Earth. It is best suited for the observation of ground sources and
therefore has been used for the observational campaigns of the Mini-EUSO. In this contribution,
we present the assembled UV flasher, the operation of the field campaign and the analysis of the
obtained data. The result is compared with the overall efficiency computed from the expectations
which takes into account the atmospheric attenuation and the parameterization of different effects
such as the optics efficiency, the MAPMT detection efficiency, BG3 filter transmittance and the
transparency of the ISS window.

38th International Cosmic Ray Conference (ICRC2023)
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Nagoya, Japan
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1. Introduction

Mini-EUSO, a fluorescence telescope with a wide FoV of 44◦ currently in operation onboard
the ISS, is the first detector in space of the JEM-EUSO program [1], launched in August 2019. The
main goal of Mini-EUSO is to measure the UV emissions from the ground and atmosphere and
to assess the feasibility and performance of the measurement of ultra-high energy cosmic rays by
means of a space-based detector. Fig. 1 shows schematic views of the full Mini-EUSO telescope
(left) and the PDM (right). A more detailed explanation of the Mini-EUSO detector and data
acquisition chain is reported in [2].
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Figure 1: Schematic view of Mini-EUSO telescope (left) and the PDM (right).
Several kinds of ground-based flashers have been developed in different groups of the JEM-

EUSO collaboration such as in Japan, Italy and France. One of such flashers has been developed in
Turin (namely “Torino UV flasher”), and calibrated with the Torino EC telescope, a telescope based
on a Mini-EUSO EC and electronics. The flasher consists of an array of 9 100W COB-UV LEDs,
batteries and an Arduino circuit (see the left panel of Fig. 3). LEDs were programmed to pulse 6
times in 12 s with a pulse duration of 1600 ms on and 400 ms off each, followed by 12 pulses in
9.6 s with 400 ms on and 400 ms off each. The durations were decided taking into account that a
pixel FoV of Mini-EUSO moves completely to neighboring pixel every ∼800 ms as it corresponds
to ∼6.3 km on ground and the ISS speed is ∼7.5 km/s. In this way, it was guaranteed to have a
light signal lasting the entire transit of the flasher in a pixel FoV (1600 ms on) and the possibility
to measure the flasher light and the background (400 ms on).

In May 2021, an observational campaign was performed at Piana di Castelluccio in central
Italy at the altitude of ∼ 1550 m a.s.l. The place was chosen based on the very low light pollution in
an area of several km radius. In this campaign, photons from the Torino UV flasher were detected
and we preliminarily estimated the overall efficiency of Mini-EUSO telescope. However, the flasher
signal was detected by Mini-EUSO at the edge of the FoV of an MAPMT. Therefore, some light
was missing as it was focused in the gap between two PMTs, which is making the calibration effort
more uncertain.

Prior to the measurement by Mini-EUSO, the flasher was tested with the Torino EC telescope
at the TurLab facility [3]. As shown in the right panel of Fig. 3, this facility allows one to place the
telescope at 40 m distance from a light source in a dark environment.

An EC based telescope, so-called ”Torino EC telescope" (Fig.2), has been originally built in
Turin for fundamental functionality tests, the study and development of the trigger for the Mini-
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EUSO telescope at the TurLab facility and open-sky conditions [4]. It consists of a 30 cm lens
tube with a 1-inch plano-convex lens, an Elementary Cell unit (ECunit), which consists of the 2×2
MAPMTs, front-end electronics based on SPAICROC3 ASICs (EC_ASIC), and the Zynq Board
connected to a PC via ethernet cable, where dedicated software for the Mini-EUSO data processing
system is installed. MAPMTs and electronics boards are powered by external High, and Low
Voltage DC Power Supply (HVPS, LVPS), respectively.

Fig.4 shows examples of the Torino flasher data taken by the Torino EC telescope (top) and by
the Mini-EUSO detector in space (bottom), where one can see the image of one frame (integration
of 40.96 ms) on the left and the light curves of the UV flasher signal (right) after the background
subtraction.

The overall efficiency of Mini-EUSO telescope can be estimated as:

Eff = Ndet/𝑁𝑤𝑖𝑛𝑑𝑜𝑤
𝑝ℎ𝑜𝑡𝑜𝑛𝑠, (1)

where Ndet is the photon counts detected by Mini-EUSO telescope and 𝑁𝑤𝑖𝑛𝑑𝑜𝑤
𝑝ℎ𝑜𝑡𝑜𝑛𝑠 is the number of

photons arriving at the UV transparent window on the ISS. For the analysis, we selected two pixels,
pixel[31,5] and pixel[31,13], which are located at 18◦ and 12◦ from nadir, respectively, where the
flasher is flashing in the center of a pixel according to the following methods for each:

- method 1: Search for a pixel with flasher signal when the neighboring top, bottom and left
pixels have the same counts (the right pixel belongs to a different MAPMT and gaps exist
between MAPMTs).

- method 2: Estimate the geographical position from the orbital information (UTC time,
distance and the angle)

As a result, Ndet are 9.7 cts/GTU (pix[31,5]) and 8.3 cts/GTU (pix[31,13]), respectively. In the
following we describe how 𝑁𝑤𝑖𝑛𝑑𝑜𝑤

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 has been estimated.

Figure 2: The Torino EC Telescope consists of an ECunit, EC_ASIC, Zynq Board, lens tube, 1” plano-convex
lens, CPU (PC), external LV and HV power supplies. For the flasher measurements in the lab, a pin-hole of
0.1 mm in diameter, instead of the lens, is used to reduce light from the flasher LEDs.
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Figure 3: Left: 3 × 3 COB-UV LED flasher built in Turin. Right: schematic view of TurLab facility where
the positions of the flasher and Torino EC telescope are indicated.
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Figure 4: Image of a frame (left) and the lightcurve (right) of the flasher LED photons detected by the Torino
EC at 40 m distance (top) and by Mini-EUSO on the ISS (bottom).

2. Calibration of the Flasher

For the end-to-end calibration, it is possible to compare the flasher signals in the same Focal
Surface (FS) detector, data acquisition system and electronics on the ground and in space, taking
into account the factors of distance, incident angles, atmospheric attenuation, the transmittance of
the optics and the ISS window. The Torino ECunit together with EC_ASIC front-end board were
absolutely calibrated in France (APC/Univ. Paris Cité) using the method and equipment for the
standard JEM-EUSO FS detector calibration [5]. The left plot of Fig. 5 shows the resulted absolute
Photo Detection Efficiency (PDE) map of the Torino EC. The telescope is set at 40 m distance from
the flasher LEDs to estimate the light intensity of the UV flasher in the large dark room of the TurLab
facility located at the fourth basement of the Physics department building of University of Turin. A
high precision 0.1 mm pin-hole is attached to the lens tube instead of the lens to reduce light from
the flasher. We repeated the measurement at different times to verify that no significant difference in
the measurement exists depending on the time or setup conditions. The number of emitted photons
is estimated from the detected photon counts by the Torino EC telescope as following:

1. Apply pile-up correction (pixel by pixel) [6].

5
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Figure 5: Left: PDE map of Torino EC. Right: Results of the flasher angular measurement.

2. Apply the absolute efficiency of the EC taking into account of a correction factor of 2% as it is
calibrated at 395 nm in wavelength, while the flasher is of ∼ 395–400 nm in wavelength.

3. Sum all the counts of the pixels with dominant signal.
4. Average peak counts.

As a result, the total number of photons obtained from the measurements performed in Apr 2022
and Jun 2022 are 3564±304 photons/GTU and 3400±296 photons/GTU, respectively.

Table 1: List of the obtained parameters of the flasher and the quadratic sum of the errors

Ndet 𝑁 𝑇𝑢𝑟𝐿𝑎𝑏
𝑝ℎ𝑜𝑡𝑜𝑛𝑠 PDE Lens uniformity 𝐴𝑡𝑡𝑛𝑎𝑡𝑚 Angle (cos3 𝜃)

Value 9.7–8.3 3482 / 0.9–0.95 0.22 18.6–12.3
Error [%] 10 6 10 5 10 2

The same measurement was repeated at different emission angles between the flasher and the
telescope to study the angular response of the flasher. In this measurement, we used a single UV
LED which is of the same type as the ones employed in the UV flasher. The right plot of Fig. 5
shows the light intensity at each angle comparing the obtained photon counts with “on-axis” value
(red dotted curve). The measurement was then repeated after rotating the lens of flasher LED to
check the dependency on the uniformity of the lens (blue dotted curve).

Table 2: Parameters for the arrival photons at ISS window.

𝑝𝑖𝑥 [31, 5] 𝑝𝑖𝑥 [31, 13]
𝜃 [◦] 18 12
𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑙𝑒𝑛𝑠 [%] 0.9 0.95
Distance(ToEC)/Distance(ME) 9.26 × 10−9 cos2 𝜃

cos3 𝜃 0.86 0.94
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Figure 6: Left: The number of arrival photons at the ISS window as a function of the emitted wavelength as
simulated with ESAF for two different heights of the flasher. Right: Efficiency of the Mini-EUSO detector
(black curve) as a function of wavelength, resulted from the Optics transmittance (purple), transmission of
the BG3 bandpass filter (red), PMT detector efficiency (blue) and ISS UV transparent window (green). The
histogram shows the fluorescence light from extensive air showers.

For the attenuation by the atmosphere, we refer to the simulation result. The left panel of Fig. 6
shows the UV flasher simulated by the EUSO Simulation and Analysis Framework (ESAF) setting
the flasher position at the altitude of 1.5 km (blue) as for the campaign, and 10 km (red), where no
attenuation by the atmosphere occurs [7]. This result indicates that the number of arrival photons
from the flasher is reduced to ∼78% due to the attenuation. The number of arrival photons at the
ISS window is:

𝑁𝑤𝑖𝑛𝑑𝑜𝑤
𝑝ℎ𝑜𝑡𝑜𝑛𝑠 = 𝑁 𝑇𝑢𝑟𝐿𝑎𝑏

𝑝ℎ𝑜𝑡𝑜𝑛𝑠×𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑙𝑒𝑛𝑠×(1−𝐴𝑡𝑡𝑛𝑎𝑡𝑚)×
𝐴𝑟𝑒𝑎(𝑀𝐸)
𝐴𝑟𝑒𝑎(𝑇𝑜𝐸𝐶) ×

(
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇𝑜𝐸𝐶)
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑀𝐸)

)2
×cos(𝜃),

where 𝑁 𝑇𝑢𝑟𝐿𝑎𝑏
𝑝ℎ𝑜𝑡𝑜𝑛𝑠 is the number of photons emitted by the flasher estimated by the TurLab measure-

ment, 𝜃 and 𝐴𝑛𝑔𝑢𝑙𝑎𝑟𝑙𝑒𝑛𝑠 are the incident angle and the Mini-EUSO lens efficiency of the corre-
sponding angle, 𝐴𝑡𝑡𝑛𝑎𝑡𝑚 is the atmospheric attenuation, Area(ME) and Area(ToEC) are the lens
and pin-hole areas of Mini-EUSO and Torino EC respectively, Distance(ToEC) and Distance(ME)
are the distances between the flasher and each detectors. Applying parameters shown in Table 2,
𝑁𝑤𝑖𝑛𝑑𝑜𝑤

𝑝ℎ𝑜𝑡𝑜𝑛𝑠 for pix[31,5] and pix[31,13] are 120.4 cts/GTU and 139.3 cts/GTU. The estimated effi-
ciencies as indicated in Eq. (1) for those pixels are 8.1 ± 1.5% and 6.0 ± 1.5%, respectively. The
total error (19%) comes from the quadratic sum of the errors listed in Table 1. Note that there is no
value of “PDE” in the table as the error is independent from it.

3. Comparison with theoretical value

The right panel of Fig. 6 shows the theoretical overall efficiency of the Mini-EUSO detector
(black curve) as a function of wavelength. It is the result of the optics transmittance (purple
curve), the transmission of the BG3 bandpass filter (red curve), the PMT detector efficiency of the
photocathodes (blue curve) and of the UV transparent window of the ISS (green curve). The system
has been designed to optimize observations of the fluorescence light emitted by nitrogen atoms

7



P
o
S
(
I
C
R
C
2
0
2
3
)
4
2
8

MiniEUSOflasher Hiroko Miyamoto

excited by the extensive air shower of cosmic rays (grey histogram). The theoretical efficiency for
perpendicular light emitted at 397.5 nm is 11%. Applying the optical efficiency of 96% and 98%
at 18◦ and 12◦, the theoretical efficiency for those angles are 10.6% and 10.8%, respectively.

4. Conclusions and perspectives

An in-flight end-to-end calibration procedure for the Mini-EUSO detector has been developed.
The Torino UV flasher signal was detected by Mini-EUSO in orbit. However, the signal was close
to the gap between MAPMTs in this campaign, increasing the uncertainty in the measurement. The
number of photons produced by the flasher is measured in the laboratory, then finally experimental
value for the Mini-EUSO efficiency has been derived, which indicates the Mini-EUSO overall
efficiency of 8.1 ± 1.5% and 6.0 ± 1.5%. A couple of more new campaigns are done and the
analysis of part of the data arrived on the ground are in progress, which includes the data of a
good condition, i.e., detected in the center of the pixel, of the PMTs as well as of the PDM. The
preliminary analysis indicates the consistency with the results described in this report. The further
analysis of other campaigns and different pixels will improve our flat fielding technique and to
complete the end-to-end calibration of the entire PDM consequently.
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