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Considering source population, mass composition, and propagation in magnetic fields is important
to reveal the origin of ultrahigh-energy cosmic rays (UHECRs). Currently, Telescope Array (TA)
and Auger experiments have observed the energy spectrum, mass composition, and anisotropy
of arrival directions at an ultrahigh-energy scale. On the other hand, the interpretation of these
observables is strongly affected by model assumptions. In our previous works, we investigated
the effect of the Galactic magnetic field (GMF) on the anisotropy of arrival directions through
the analysis of the mock datasets and found that contributions of the starburst galaxy are under-
estimated. In this study, we apply the technique in previous studies and investigate the effect of
GMF on the energy spectrum and mass composition. We especially discuss the discrepancy in
energy spectrum between the northern and southern hemispheres reported by the TA and Auger
experiments.
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1. Introduction

Telescope Array (TA) [1] and Auger experiments [2] lead ultrahigh-energy cosmic ray (UHECR)
observations in the north and south sky, respectively. The major observational results of these ex-
periments consist of the energy spectrum, mass composition, and anisotropy of arrival directions.
The interpretation of these observables is important to constrain the origin of UHECRs.

There is a difference between the energy spectrum between TA and Auger experiments [3, 4].
Generally, the flux of UHECRs with the TA experiment is higher than that of the Auger experiment
at all energy bins. Even after rescaling the energies of TA and Auger experiments with ±4.5%, the
flux of the TA experiment is higher than that of Auger at higher energy bins.

There are tries to explain the discrepancy of the energy spectrum: the first explanation for the
discrepancy is the systematic uncertainties caused by the difference in detectors and reconstruction
methods. However, [4] suggests that the difference in analysis methods does not affect the discrep-
ancy between the TA & Auger energy spectrum. The second is an astrophysical origin that causes
the discrepancy. For example, [5] suggests the local source in the northern sky, which can explain
the higher CR flux of the TA experiment. Another explanation is what we propose in this report:
the influence of the magnetic fields on the energy spectrum.

In our previous works [6, 7], we investigated the effects of the GMF deflection on UHECR
anisotropies based on the calculation with CRPropa 3 [8]. The deflection of UHECRs caused by
GMF affects the distribution of UHECRs. The limitation of sky coverage of the experiment also
affects the analysis of the UHECR anisotropy.

In this study, we investigate the systematic difference in the energy spectrum caused by the
Galactic magnetic field (GMF). For the source model, we assume the nearby starburst galaxies
reported in [9, 10]. For the model of GMF, we adapt the JF12 model [11, 12] and PT11 model [13].

2. Method

2.1 Dataset generation without photodisintegration process

We mainly follow the dataset generation process in [6, 7]. If we ignore the GMF deflections,
the CR flux outside the Galaxy can be written as

𝐹org(n, 𝜃) =
∑

𝑖 𝑓𝑖 exp(n𝑖 · n/𝜃2)∫
4𝜋

∑
𝑖 𝑓𝑖 exp(n𝑖 · n/𝜃2)𝑑Ω

. (1)

In this equation, the deflections by EGMF are approximated to be Gaussian smearing with the
separation angular scale 𝜃. To reflect the deflection by GMF, we define the backtracked trajectories
of CRs as

norg = 𝐴BT(nearth, 𝑅), (2)

where 𝐴BT represents the backtracking calculation through GMF models with CRPropa 3.2 [14].
For GMF models, we adapt JF12[11, 12] and PT11[13] models. The GMF models consist of a
regular component and a random component. To focus on the difference at the highest energy bins,
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Figure 1: Dataset generation process.

we consider only regular components. We rewrite the Equation 1 as

𝐹earth(nearth, 𝜃, 𝑅) = 𝐹org(norg, 𝜃)
= 𝐹org(𝐴BT(nearth, 𝑅), 𝜃).

(3)

For the energy spectrum on sources, we adapt a power-low spectrum with −2.7 index and single-
mass assumption (proton/nitrogen/iron). Although previous UHECR anisotropy studies [9, 10]
assume the source contribution (anisotropic fraction) and isotropic backgrounds for UHECRs, we
only assume the source contribution.

2.2 Dataset generation with photodisintegration process

To reflect the physical propagation process, we also apply 1-dimensional propagation with
CRPropa 3.2 [14]. Figure 1 shows the dataset generation process. We add the 1-dimensional
propagation with 106 primary CRs and randomly select the events whose energies are above energy
thresholds.

We conduct the propagation with the power-low spectrum in Section 2.2. We also test the
datasets generated with a mixed-mass assumption [15]. We follow the formulas in [15]:

𝐽𝐴(𝐸) = J𝐴 𝑓cut(𝐸, 𝑍𝐴, 𝑅max)𝑛evol(𝑧)
(

𝐸

109 GeV

)−𝛾
, (4)

where 𝐽𝐴(𝐸) is the energy spectrum of each mass (𝐴) on sources, 𝑛evol(𝑧) is a redshift evolution
term (which is approximated to be 1), and 𝑓cut is a cutoff function with maximum rigidity 𝑅max,
respectively. The cutoff function 𝑓cut is given as

𝑓cut =


1 (𝐸 < 𝑍𝐴𝑅max)
exp

(
1 − 𝐸

𝑍𝐴𝑅max

)
(𝐸 > 𝑍𝐴𝑅max).

(5)
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Figure 2: Energy spectrum of mock UHECR datasets with JF12 model. The top and bottom panels show
the results without and with the propagation process, respectively. From left to right, each panel indicates
single-proton, nitrogen, and iron assumption, respectively. The blue circle (red triangle) represents the results
with the FoV of the TA (Auger) experiment.

Qualitatively the energy spectrum of each mass follows a power-low with an index of −𝛾 at lower
energies than 𝑍𝐴𝑅max, and follows the exponential cutoff at higher energies than 𝑍𝐴𝑅max. Same as
in [6], we adapt the best-fit parameters from [15] as 𝛾 = −0.80 and 𝑅max = 1.6 EV.

3. Results and discussions

We show the results in Figures 2 and 3 for JF12 and PT11 models, respectively. In each
figure, the top (bottom) panel shows the results with (without) the propagation process. From left
to bottom, we assume single-proton, nitrogen, and iron case.

The difference between northern and southern sky largely depends on the regular component
of GMF models.

For the JF12 case, the flux with TA sky coverage is larger than that with Auger sky coverage.
In the single-nitrogen and iron case, the flux with Auger sky coverage is higher at the rigidity of
log(𝑒𝑅) ∼ 0.6 EV (log(𝐸) ∼ 1.5 EeV for single nitrogen case and log(𝐸) ∼ 2.0 EeV for single iron
case). This may be because NGC1068 is outside of the TA FoV at this rigidity scale.

For the PT11 case, we can see similar effects as the JF12 case in the single-proton and nitrogen
case. In the single-iron case, however, the flux with Auger sky coverage is much larger than that
with TA experiment.

The photodisintegration process during the propagation affects the higher energy bins. Espe-
cially, the cutoff of the energy spectrum is clearly seen for the single-nitrogen case.
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Figure 3: Same as Figure 2, but with PT11 model.
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Figure 4: Energy spectrum of mock UHECR datasets with mixed-mass assumption. The left panel and right
panels indicate the JF12 model and PT11 models, respectively.

We also show the results for the mixed-mass composition case (photodisintegration process
included). Due to the largest contribution of nitrogen, the results is similar to the single-nitrogen
case. Below the cutoff of the spectrum, the flux of Auger is slightly higher than TA. At the highest
energy bins, the flux of TA is larger than Auger. This is due to the energy loss of CRs from
NGC1068 (for example, UHECRs whose energies are above 200 EV cannot reach the earth over
the ∼ 18 Mpc distance).

Although we can see the slight difference between TA and Auger sky coverage for the mixed-
mass composition case, it does not explain all the differences between TA and Auger energy
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spectrum.

4. Summary

In this study, we investigate the systematic difference in the energy spectrum between TA and
Auger experiments caused by the Galactic magnetic field (GMF).

Depending on the GMF model and the position of most contributed sources, the effects of
GMF appear differently.

Especially when we care the photodisintegration process, the position of NGC1068 is important
to the higher energy bins due to the large contribution and larger distance from the earth.

Although we can see the slight difference between TA and Auger sky coverage for the mixed-
mass composition case, the deflection by GMF does not explain all the differences between TA and
Auger energy spectrum.

We need to note that our assumptions and models are very simple and not realistic. Although
we assume 100% contribution of nearby SBGs to UHECRs, [9] suggests only ∼ 10% of UHECRs
can be explained by the SBGs. When we discuss the effects of magnetic fields in lower energy
bins, we need to consider the random component of GMF models (although we focus on the highest
energy bins in this report). The scattering by EGMF also needs to be energy-dependent: not like
simple Gaussian scattering as in this study.

We also need to note that we assume the same energy spectrum and mass composition for all
the SBGs. Especially, the shape of energy spectra of top-4 contributed SBGs (M82, NGC4945,
NGC253, and NGC1068) should affect the difference in energy spectrum between TA and Auger
experiments. For this scenario, we need to closely look at the astronomical origin considering the
GMF deflections.
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