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The kilometer-square array (KM2A) of the Large High Altitude Air Shower Observatory
(LHAASO, located at 4410 m above sea level with an atmospheric depth of 600 g/cm2) can
simultaneously measure air shower sizes of both electromagnetic particles and muon contents
with high precision for cosmic rays with energies in the knee region. The energy is reconstructed
by combining parameters of muons and electromagnetic particles, which is weakly dependent
on the mass composition of cosmic rays. We study the measurement method of the all particle
spectrum and mean logarithmic mass through the simulation data, and discuss the corresponding
systematic errors.
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1. Introduction

The all-particle energy spectrum of cosmic-rays can be roughly described as a single power
law, its energy from 109 eV to 1020 eV, spanning 11 orders of magnitude, and its flux intensity
across more than 30 orders of magnitude. There are four fine structures on the cosmic ray spectrum,
namely the "knee" near 4 × 1015 eV, the "second knee" near 4 × 1017 eV, the "ankle" near 4 × 1018

eV, and the GZK cut-off near 1020 eV [1]. The origin and propagation mechanism of cosmic rays
are revealed through the accurate analysis of the energy spectrum and composition of cosmic rays.
Direct detection of cosmic rays have high altitude balloon experiment CREAM, SuperTIGER, etc.;
In satellite experiments such as AMS, DAMPE, PAMELA etc., the energy range of cosmic ray
detection is mostly below 100 TeV. Due to the rapidly decreasing flux with increasing energy, the
study on the composition of cosmic-rays at energies around knee region is difficult for space-born
experiments and mainly relies on measurements of the induced extensive air shower (EAS) on
ground which suffer from poor composition resolution. A knee structure at few PeV in all-particle
energy spectrum of cosmic rays has been observed by many experiments [2–7].

Muons are created in decays of shower hadrons, such as charged pions and kaons. Once
produced, muons decouple immediately from the extensive air shower (EAS) and travel almost in
straight lines to the detector with smaller attenuation than that for electromagnetic and hadronic
particles. Studying muons becomes therefore a sensitive and direct way to probe the hadronic
physics and to identify possible deficiencies of hadronic interaction models. The muon number in
an EAS is also sensitive to the cosmic ray mass composition. So, the number of muons detected by
detectors can be used to determine the composition and energy of the primary particles.

2. Experiment and Simulation

2.1 The LHAASO-KM2A detector

The Large High Altitude Air Shower Observatory (LHAASO) is located in Daocheng, Sichuan,
at an altitude of 4410 m [8, 9]. It is a composite detector that includes KM2A with an area of
1.3 km2 and a water Cherenkov detector array (WCDA) with a total area of 78000 m2, and 18
wide-field air Cherenkov/fluorescence telescopes (WFCTA). This work uses the KM2A full array,
which includes 5216 electromagnetic detectors (EDs) and 1188 muon detectors (MDs). The MD
of KM2A is the most powerful muon detector in current CR observatory on the ground, has shown
its great ability in the measurement of Crab Nebula in the first phase operation of LHAASO [10].
EDs are distributed with a spacing of 15 m and MDs are distributed with a spacing of 30 m. More
details about the experiment setup can be found in [9].

The MD is a pure water Cherenkov detector with an inner diameter of 6.8 m and height of
1.2 m enclosed within a cylindrical concrete tank. An 8-inch PMT sits at the center of the top of
the tank and looks downward. The thickness of overburden soil is 2.5 m to absorb the secondary
electrons/positrons and gamma-rays in showers[9]. This can reduce the low-energy electromagnetic
particles punching through the soil into the water and the threshold for 𝜇± is about 1 GeV[11].
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2.2 Monte Carlo Simulation

The simulated data is also for KM2A quarter array, using the Cosmic Ray Simulations for
KAscade (CORAIKA) [12] software package to simulate EAS. The high-energy hadronic interac-
tion model is QGSJETII-04 [13] and EPOS-LHC [14], the low energy hadronic interaction model
is FLUKA [15]. The zenith angle range of the shower is 0-40 degrees, and the azimuth angle range
is 0-360 degrees with energy spectrum 𝛾 = −2 (energy range 10 TeV-50 PeV). MC data contain
individual sets for different representative primaries: hydrogen (H), helium (He), nitrogen (denoted
by CNO), aluminum (denoted by MgAlSi) and iron (Fe).

The interaction of secondary particles in the detector was simulated by G4KM2A, which was
developed in the framework of the GEANT4 package. The sample area was a circular ring region
with an inner and outer ring radii of 260 and 480 m, respectively. More details about energy
reconstruction can be found in [16]. The total number of simulated events for the five components
of the QGSJETII-04 model was approximately 5.555×107.

2.3 Data quality Criteria

The operation fetching and reconstruction process of the detector is not completely ideal,
and there may be some cases of false trigger and reconstruction error. In order to improve the
reconstruction accuracy, the selection criteria are as following:

• 10◦ <= 𝜃 <= 30◦: zenith angle of shower more than 10 degrees and less than 30 degrees;

• 320m <= R <= 420m: The location of the reconstructed shower core was restricted to inner
and outer ring radii of 320 m and 420 m, respectively.

• 𝑁𝑒 > 80: The number of electromagnetic particles 𝑁𝑒 was larger than 80.
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Figure 1: Long time stability of event trigger rate (red) and atmosphere pressure (blue). Each point is an
average of data for one day.

The data collected by LHAASO-KM2A array in September 2021 were selected and collected
until December 2022. In order to study the performance of the detector, there are many artificial
or unexpected factors that may cause data collection anomalies during operation. Therefore, this
analysis only uses data files during normal operation. The long-term stability of the ED array event
rate is shown in Figure 1.
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Figure 2: Left: Muon integral intensities for different Pressure intervals derived from the measurements with
LHAASO-KM2A. Error bars represent statistical uncertainties. The CIC employed is shown as horizontal
red line. Right:After the CIC method, the measured muon content varies with atmospheric pressure. The
blue dots are the measured values, and the red squares are the muon content corrected for atmospheric
pressure.

Here, we will use the approach based on the Constant Intensity Cut (CIC) method [17, 18], to
correct the effect of atmospheric pressure on the experimental data. The aim of the CIC method
is to provide a way to relate data from different atmospheric pressure at roughly the same primary
energies, without any reference to MC simulations. In order to apply the CIC method, in the first
instance, data were grouped into six pressure intervals as shown on the left of Figure 2. The integral
muon intensity 𝐽 (> 𝑁𝜇) is estimated according to the differential muon shower size spectrum. The
number of muon under different air pressure is obtained after the muon size spectrum in Figure 2 is
cut by the intensity log10(𝐽)=-6.1, as shown in the blue dot in Figure 2. Atmospheric pressure data
were observed at 4,397m. To be able to study atmospheric changes and apply corrections where
needed, the ground pressure at an altitude of 4,397 m is 586.6 hPa (corresponding to simulated
atmospheric pressure in CORSIKA atmosphere 1 [19]) as the reference atmosphere pressure.
Because the energy reconstruction formula and the mean mass measurement formula are based on
the study of showers generated by CORSIKA simulation. By fitting the relationship between the
number of muon under different pressure, the ratio relationship between the number of muon under
the reference pressure of 586.6hPa and the number of muon under other pressure is obtained, and
the number of muon under different pressure is revised to the number of muon under reference
pressure. The influence of atmospheric pressure on the measurement of muon content was 4%, and
became 0.6% after the correction of atmospheric pressure, as shown on the right of Figure 2.

3. All-Particle Energy Spectrum

To reconstruct the cosmic ray energy weekly dependent of the components, one new parameter
𝑁𝑒𝜇 is developed to reconstruct the primary energy [16], which is defined as:

𝑁𝑒𝜇 = 𝑁𝑒 + 2.8𝑁𝜇 (1)

where 𝑁𝑒(or 𝑁𝜇) counted only the EDs (or MDs) within 40–200 m far from the shower axis. More
details about energy reconstruction can be found in [16].
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Figure 3: Upper: The points represent the energy spectrum obtained from the analysis of simulation data,
and the lines are the real energy spectrum model with Gaisser H3a [20] and Horandel [21] models. Bottom:
The ratio of the simulated measured value to the expected value (Gaisser or Horandel) with reconstructed
energy.

In order to verify the correctness of the all-particle spectrum measurement method, we use
simulated data to check the measurement method. According to the use of different components of
the energy spectrum model, after the reconstruction of energy, can reproduce the energy spectrum
model? For example, we use the Gaisser [20] energy spectrum model. The points in the Figure 3
represent the energy spectrum obtained from the analysis of simulation data, and the lines are the
expected energy spectrum(Gaisser H3a [20] and Horandel [21]). The energy spectrum obtained
from the results is consistent with the expected energy spectrum model.

4. Mean logarithmic mass of cosmic rays

According to the Matthews-Heitler model [22], the muon content from a cosmic ray shower is
related to its composition. 𝐴 is the mass number of the cosmic ray nucleus.In the simulation data,
according to the relationship between the mean number of muon measured in each energy interval
and ln(𝐴), the mean mass of cosmic ray is derived according to the measured number of muon.
Given the energy, the relationship between 𝑁𝜇 and 𝐴 is ln(𝑁𝜇) = 𝑝0 + 𝑝1 · ln(𝐴). The expected
truth mean mass of H3a cosmic ray energy model [20] is shown as the black curve in Figure 4,
which is the mean mass over five components with the flux as weight. The mean mass (named
triggered mass) of the simulation events that passed the event selection is calculated also with the
flux weight for each component at each energy interval. This triggered mass matches well with the
H3a model. The mean mass (named derived mass) of the simulation events as derived from ln(𝑁𝜇)
is also plotted and this derived mean mass almost totally overlaps with the triggered mean mass.
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Figure 4: Upper: Mean ln(𝐴) as a function of the reconstructed energy in a simulation based on the H3a
model. The black open-cross (mc:ln(𝐴)) represents the triggered mean logarithmic mass of the simulated
showers and the black square represents ln(𝐴) derived from ln(𝑁𝜇), and five colors styles represent individual
components ln(𝐴) derived from ln(𝑁𝜇), respectively. The black curve is the counting result based on the
energy according to Ref. [20] and Ref. [21]. The error bars show the statistical uncertainties. Bottom: The
ratio of the simulated measured value to the expected value (Gaisser or Horandel) with reconstructed energy.

These plots verify that the mean mass can reliably be derived from the number of muon ln(𝑁𝜇)
within uncertainties.

5. Conclusion

In this work, the data of the KM2A full-array are used to measure the shower muon content
and electromagnetic particles of the cosmic rays around the knee region. QGSJETII-04 hadronic
interaction model is used to describe the development of showers in the atmosphere, and the
interactions in the detector are simulated by a G4KM2A procedure. Simulation data are used to
verify the correctness of the all-particle spectrum measurement method. And, we use the simulation
data to verify that the mean mass of cosmic rays can be reliably derived from the number of muon
ln(𝑁𝜇) within uncertainties. It provides important support for subsequent physical analysis.
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