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Current cosmic ray anisotropy experiments have shown a significant swing in both the direction
and the amplitude of the dipole at energies around tens of TeV. Due to the charged nature of
these particles, and the presence of magnetic fields in our galaxy, an underlying composition-
dependent dipole swing is expected. For this reason, combining measurements of the composition
and the distribution of arrival directions is essential for unveiling the astrophysical origin of this
structure. In this work, we study the potential of the upcoming Southern Wide-field Gamma-ray
Observatory (SWGO) in contributing to these anisotropy studies. We present a template-based
method developed for reconstructing the number of muons and separating primary cosmic rays.
Preliminary resolutions of 5 − 30% in the number of muons and an accuracy of 70 − 90% in
the species separation are found. A clear improvement is seen by considering a dedicated muon-
counter layer in a detector, highlighting the future potential of SWGO.
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Figure 1: True number of muons at the detector level versus true electromagnetic energy for different
primaries. The shaded regions show the result of a linear fit in log10 𝑁

true
𝜇 and log10 𝑁

true
EM .

1. Introduction

One of the main tools for investigating the origin of cosmic rays is the study of the anisotropy
in their distribution of arrival directions. As expected from their charged nature, these particles
arrive strongly isotropically. Nevertheless, advances in experimental techniques and accumulation
of the large exposures from cosmic ray experiments have allowed the probing of the levels of the
dipole and higher multipoles of the distribution.

Currently, a dipole amplitude of ∼ 10−3 is measured up to tens of TeV, at which a significant
swing in the dipole phase is seen accompanied by a corresponding drop in the amplitude [1].
The origin of this effect is yet to be understood. However, due to the magnetic origin of the
acceleration of these particles, a composition-dependent effect is naturally expected. No current
mass-dependent anisotropy data is available to test this hypothesis and, thus, future measurements
as such are desirable.

Separating between primaries using ground-based cosmic ray detectors, such as the experiments
designed for this energy range, has proven a hard task due to the stochastic nature of the air showers
generated by these particles in the atmosphere. Nevertheless, good separation could be obtained if
information about secondary muons could be accessed [2]. Figure 1 shows the expected number
of muons at the detector level versus the electromagnetic energy of the air shower for example
simulations of different cosmic ray primaries. A decent separation is found for at least four
primaries (proton, helium, nitrogen, and iron). The heavier the mass, the smaller the spread,
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as expected from the superposition model. Therefore, future experiments with muon-counting
capabilities could improve our understanding of the origin of cosmic rays.

The current generation of ground-based water Cherenkov gamma-ray detectors is well es-
tablished, leading to important results in the field [3, 4]. The Southern Wide-field Gamma-ray
Observatory (SWGO) is a future ground-based wide-field gamma-ray and cosmic-ray detector in
the research and development stage to be built in South America, expanding the current generation
of experiments to the Southern Hemisphere [5]. One of the considered detector designs consists
of a dual-layered water Cherenkov tank. Electromagnetic secondary particles of the shower are
expected to deposit their energy calorimetrically in the top chamber of the tank. Muons, on the other
hand, are expected to pass through both chambers, emitting light proportionally to their traveled
distance. For that reason, a dual-layered design provides a crucial tool for muon counting and, thus,
SWGO could contribute to further cosmic ray anisotropy studies.

In this work, we develop a template-based method for reconstructing the number of muons of
TeV-PeV cosmic ray air showers as well as separating between primary species, which is presented
in Section 2. The method is then used to calculate preliminary estimations of the capabilities of
SWGO in such studies, whose results are shown in Section 3. Finally, conclusions and future steps
are addressed in Section 4.

2. Template method

Template-based methods have been proven as efficient tools for the reconstruction of gamma-
ray showers with ground-based detectors [6]. It is based on building up probability density functions
(PDF) for physical quantities measured by the experiments in bins for the quantities to be recon-
structed and further comparing measured events to these PDFs.

For the proof of concept here presented, we used a small preliminary set of simulations. Four
input primaries (P, He, N, and Fe) were considered and, for each, 5000 events were simulated using
the CORSIKA (version 7.7410) [7] and GEANT4 (version geant4-10-00-patch-04) [8] simulation
packages. The used hadronic interaction models for low and high energies were, respectively,
UrQMD 1.3.1 [9, 10] and QGSJET-II-04 [11]. The energy spectrum was taken as 𝐸−1 from 101

TeV to 103.5 TeV so that each template would have roughly the same statistics. Zenith angles
between 0◦ and 65◦ equally distributed in sin2 𝜃 were chosen. Only showers falling inside the array
were simulated. One of the proposed detector designs and layouts is considered, consisting of 3.82
m wide and 3 m tall water tanks, divided into two layers with 2.5 m (top) and 0.5 m (bottom). The
layout consists of two zones: the inner array with 5731 tanks in a circle of 160 m radius, resulting
in a fill factor of 80%, and the outer array with 858 tanks in a circle of 300 m radius, resulting in a
fill factor of 5%.

Templates were binned in bins of true zenith angle, 𝜃, true number of muons at the detector
level, 𝑁 true

𝜇 , and true primary species. For the proof of concept, only one zenith bin, (0, 30)◦, was
considered and 𝑁 true

𝜇 bins were divided into 10 bins per decade. Two different sets of templates were
built by filling 2D or 3D histograms with the individual tank information for each event that fits the
bin criteria. For the 2D templates, the charge measured on the top chamber of the tank, 𝑞top, and the
distance of the tank to the true shower core on the shower plane1 were used. The 3D templates add

1This compensates for the effects coming from different zenith angles and allows for a broader zenith binning.
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Figure 2: Example 2D template for true proton events with 𝜃 < 30 deg and 103.5 < 𝑁 true
𝜇 < 103.6. Each

entry in the 2D histogram is the information of an individual tank in an event. The x axis represents the
distance of the tank to the true shower core position on the shower plane, while the y axis represents the
simulated charge measured on the top chamber of the tank. Tanks that didn’t measure any charge are stored
at log10

(
𝑞top/p.e.

)
= −2, resulting in the bottom horizontal line. This line is broken down in the bottom

panel, which shows the probability of a tank at a given distance detecting no signal.

a new dimension by considering the charge measured in the lower chamber, 𝑞bot. Figure 2 shows
an example 2D template. The lateral distribution function (LDF) of an average shower that fits the
bin criteria can clearly be seen in the pdf. The 3D templates have a similar structure.

Once the templates are built, events can be reconstructed by comparing their tank information
distribution to the pdfs. The likelihood of an event being described by the pdf of each template bin
is calculated. The likelihood profile for an example event is shown in Figure 3. For each primary
and given dimension template, the profile shows a well-defined minimum. Events reconstructed
using templates of heavier masses (blue line in the example plot) will likely overestimate the number
of muons, while events reconstructed using templates of lighter masses (red and orange lines in
the example plot) will likely underestimate it. Nevertheless, no prior can be done about the true
primary species and, thus, a specific likelihood profile cannot be chosen. The reconstructed number
of muons is, thus, taken as the one with the lowest likelihood value between the four minima (green
in the example plot). In the same way, the reconstructed primary is taken as the primary for which
the likelihood value was the lowest (nitrogen in the example plot). 2D and 3D reconstructions are
done independently.
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Figure 3: Likelihood profile as a function of the reconstructed number of muons for an example event.
Different colors represent different true primary templates. Dashed and full lines represent results using 2D
and 3D templates respectively. The dashed black line shows the true number of muons for this event. The
right-hand side panel shows a zoom in the region around the minimum likelihood.
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Figure 4: Bias (left) and resolution (right) of the reconstructed number of muons. Different colors represent
different true primaries. Dashed and full lines represent results using 2D and 3D templates respectively. The
bias and resolution are defined as the mean and RMS of the (𝑁 rec

𝜇 − 𝑁 true
𝜇 )/𝑁 true

𝜇 distribution.

3. Results

Following this procedure, the number of muons and primary species for the events in the
simulation set were reconstructed. The bias and resolution in the number of muons were calculated
as the mean and RMS of the (𝑁 rec

𝜇 −𝑁 true
𝜇 )/𝑁 true

𝜇 distribution and are shown in Figure 4. As expected
due to the spread shown in Figure 1, the reconstruction of protons achieves the worst results, while
the best results are obtained for heavier masses, such as nitrogen and iron. A clear improvement in
the reconstruction is seen by adding the information of the bottom chamber, i.e., going from a 2D
to a 3D reconstruction.

The accuracy in the particle species separation is shown in Figure 5. Once more, a clear
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Figure 5: Reconstructed primary as a function of true energy for different test primaries. Different colors
represent different reconstructed primaries. Dashed and full lines represent results using 2D and 3D templates
respectively. Each panel represents a different true test primary (in order: proton, helium, nitrogen, and iron).

improvement is seen by using the 3D templates, leading to 70−90% correctly reconstructed species
depending on the true primary and energy.

4. Conclusions

In this work, we have proposed a template-based method for the reconstruction of the number
of muons and primary species separation of cosmic ray air showers for the upcoming SWGO
experiment. A proof of concept of the method was shown by applying it to a small set of preliminary
simulations. Preliminary results are in line with expectations, validating the method. Strong
improvements in both the reconstruction and the separation were seen by adding the information of
the bottom chamber of a dual-layered water Cherenkov tank, highlighting the potential of SWGO in
performing such measurements. Further investigations are planned, e.g., by having larger statistics,
wider energy and zenith angle ranges and improving the procedure for the template building.
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