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In this paper, we present a cutting-edge approach that combines Graph Neural Networks (GNNs)
with AutoML for reconstructing ground-based cosmic ray (CR) observational data. Our novel
method accurately estimates primary cosmic ray energy and enhances proton/gamma identifica-
tion. We have achieved convincing results by using full Monte Carlo simulation data to simulate
the Tibet ASgamma experiment (Tibet III+MD). By utilizing the powerful functions of AutoML
and GNNs, our integrated approach achieves a significant improvement of 31% energy resolu-
tion in data reconstruction above 100 TeV, surpassing the performance of traditional methods
in reconstructing the primary energy and arriving direction of the particles. Additionally, our
method effectively reduces the cosmic ray background by 30% compared to traditional methods,
while preserving the crucial gamma events. The outstanding accuracy of our GNN-based energy
reconstruction is further amplified through AutoML, which enables the assimilation of critical
information, such as air shower size, secondary cosmic ray lateral distributions, density distri-
butions on the detector, core position, zenith angle distributions, and more. Beyond cosmic ray
observation, our versatile machine learning approach holds promise for tackling a wide range of
particle physics and astrophysics challenges, making substantial contributions to these fields and
paving the way for exciting future advancements.
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1. Introduction

The Tibet ASgamma experiment, positioned at 4300 meters altitude in Yangbajing, Tibet,
China, covering a total area of 65,700 𝑚2 [1]. It consists of three sub-arrays: Tibet air-shower array
(Tibet-III), air-shower-core detector-grid (YAC-II), and underwater Cherenkov muon detector array
(MD) covering a total area of 3,400 𝑚2 [2, 3].

Figure 1: Schematic view of (Tibet-III+MD) array(left) and a MD detector structure(right).

Machine learning (ML) has transformed particle physics, aiding data collection, physics object
reconstruction, identification, and new physics searches [4]. Traditional ML methods depended on
manually derived high-level features and algorithms like decision trees, support vector machines,
and shallow neural networks. However, advancements, particularly in deep neural networks like
CNNs, RNNs, and GNNs, leverage raw detector data directly [5], bypassing laborious feature
extraction and yielding superior outcomes.

Graph neural networks, especially, have made significant strides, finding applications across
domains such as recommendation systems, medical biology, risk control, and optimization.

With a profusion of ML techniques, selecting the right methods and optimal hyperparameters
can be time-intensive. AutoML emerges as a robust, efficient solution for this challenge, ensuring
fault tolerance.

The hexagonal detector configuration of the Tibet ASgamma experiment introduces internal
and external variations, rendering direct matrix representations challenging. Furthermore, data
translation symmetry is imperfect, hindering the performance of convolutional neural networks.
However, graph neural networks excel in non-Euclidean data spaces. This article proposes utilizing
GNNs for feature extraction and combining their outcomes with traditionally derived features. Event
reconstruction and identification will be achieved through the autoML approach.

2. Graph Neural Network

Graph Neural Networks (GNNs) excel at capturing intricate relationships in diverse datasets,
such as social networks, maps, and knowledge graphs. In the realm of particle physics, graph
representations offer advantages over traditional matrices, adeptly handling variable-sized data
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without unnecessary zero-padding. These graphs effectively manage sparse, heterogeneous detector
data that may not seamlessly translate into images[6].

Formally, a graph 𝐺 = (𝑢,𝑉, 𝐸) is defined with 𝑁𝑣 vertices and 𝑁𝑒 edges. 𝑢 denotes overall
graph features, 𝑉 = 𝑣𝑖 comprises node sets (𝑣𝑖 represents the i-th node’s features), and 𝐸 = 𝑒𝑖 𝑗

signifies edges (𝑒𝑖 𝑗 holds edge features between the i-th and j-th nodes).
For graph neural networks, the computation in the (𝑙+1)𝑡ℎ iteration of graph𝐺 = (𝑢𝑙+1, 𝑉 𝑙+1, 𝐸 𝑙+1)

is as follows:
Edge feature update: 𝑒𝑙+1𝑖 𝑗 = 𝜙𝑒 (𝑣𝑙

𝑖
, 𝑣𝑙

𝑗
, 𝑒𝑖 𝑗 𝑙), where 𝜙𝑒 aggregates information from adjacent

nodes via edges. Node feature update: 𝑣𝑙′𝑖 = 𝜌(𝑒𝑙+1
𝑖 𝑗

) for all 𝑗 ∈ 𝑁𝑖 , with 𝜌 processing aggregated
edge features. Global graph feature update: 𝑢𝑙+1 = 𝜙𝑣 (𝑣𝑙′

𝑖
, 𝑣𝑙

𝑖
, 𝑢𝑙), as 𝜙𝑣 updates node and global

graph features. Choice of 𝜙𝑒, 𝜙𝑣 , and 𝜌 yields varied GNN structures, accommodating diverse
patterns and data dependencies. These operations iteratively equip GNNs to learn and represent
complex relationships within graph-structured data, effectively addressing tasks in particle physics
and beyond[6–8].

3. Automated Machine Learning

Automated Machine Learning (AutoML) simplifies model selection, configuration, and op-
timization, streamlining the machine learning process. Unlike traditional methods that demand
expert intervention, AutoML empowers non-experts to harness machine learning proficiently[9].

AutoML aims to automate common tasks like data preprocessing, feature engineering, model
selection, hyperparameter tuning, and ensemble creation. By utilizing AutoML tools, manual effort
is minimized, expediting the development of high-performing models. These tools automatically
identify suitable models, fine-tune hyperparameters, and enhance performance through model
fusion[10, 11].

4. Monte Carlo simulation

The extensive air showers (EAS) development in the atmosphere and the response in the
Tibet hybrid experiment array have been comprehensively studied using full Monte Carlo (MC)
simulation. The widely-used simulation code, CORSIKA [12], is employed to generate both gamma
events and cosmic ray events. And all detector responses are calculated using Geant4[13].

For the gamma events, the primary particle’s energy ranges from 300 GeV to 100 PeV, with a
spectral index of −2.0. In total, 109 gamma events are generated to capture a broad range of energy
levels.

Regarding the primary cosmic-ray composition model, the model spectrum proposed by M.
Shibata et al. [14] is adopted to determine their chemical composition and energy spectrum.
The low-energy hadronic interactions are simulated using FLUKA [15], while the high-energy
interactions are modeled using EPOS LHC [16]. A significant number of 4× 109 cosmic ray events
are generated to ensure robust and statistically significant results.
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Table 1: Parameters used in the CORSIKA air shower simulation

Primary type Spectral
Energy

range(TeV)
Events

Gamma rays Power law with index -2 0.3 − 105 109

Cosmic rays M. Shibata et al.[14] 0.3 − 105 4 × 109

5. Method

The cut condition employed closely follows the approach used in the Crab study [17], with
the omission of 𝑁𝜇 cut condition and the removal of age cut condition to increase the dataset.The
traditional method refers to the method in ref[17, 18].

Figure 2: Algorithm flowchart

The algorithm flowchart for our method showed in Figure.2. First, the Monte Carlo simulation
data is transformed into graph-structured data based on the relative positions of the detectors. The
detector data are converted into graph data, and a GNN is utilized for feature extraction from the
graph data. In the case of data reconstruction, two additional fully connected layers are added after
the pooling layer of GNN. The extracted features are combined with the features obtained from the
Monte Carlo simulation data using traditional method. Subsequently, the combined features are fed
into an autoML system to obtain the reconstruction or discrimination results.

6. Result

6.1 Event Reconstruction

For reconstructing (Tibet III+MD) raw experimental data, it is discussed in two parts, angle-
resolved and energy-resolved. The angle resolution and energy resolution obtained in this work are
compared with the traditional method at different energies.

Comparing the angular resolution obtained by this work with the traditional method, as shown
in the figure.3, the angular resolution obtained by this work is better than the traditional method in
each energy range.
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Figure 3: Comparison of arrival directions between traditional method and this work

For the reconstruction of energy, it can be seen in the figure.4 that compared with the traditional
method, the image obtained by the reconstruction of this work is narrower, and as can be seen in
the table.2, the energy resolution we obtained is at different energies and different zenith angles are
superior to traditional methods. And we achieve a 31% improvement in energy resolution for event
about 100 TeV in all zenith angle, compared to traditional methods.

Figure 4: Comparison of energy fitting results between traditional method and this work.

Table 2: Comparison of energy resolution between traditional method and this work

Energy about 50 TeV about 100 TeV
sec(theta) 1.0-1.1 1.1-1.3 1.3-2.0 1.0-1.1 1.1-1.3 1.3-2.0

Traditional method 0.33 0.47 0.87 0.20 0.31 0.72
This work 0.22 0.30 0.44 0.17 0.23 0.39
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6.2 Gamma/Proton Identification

For different energy ranges, we define Signal-to-Noise Ratio (SNR) and use the results from
this work and traditional methods to calculate the optimal cut conditions that maximize SNR. Then,
we compare the SNR values across all energy ranges. Gamma/Proton identification of this work is
better than our traditional methods at each energy bin, especially for high energy ranges.At about
100 TeV, this work achieves a third higher SNR than conventional methods, roughly reducing the
cosmic ray background by 30% imporvement compare to traditional methods, while preserving the
same gamma events.

Figure 5: Comparison of SNR between traditional method and this work.

7. Discussion

The integration of Graph Neural Networks (GNNs) and Automated Machine Learning (Au-
toML) holds remarkable potential for enhancing event reconstruction and identification in the Tibet
ASgamma experiment. This innovative fusion promises significant improvements in processing
cosmic ray (CR) observational data.

By harnessing the capabilities of GNNs and AutoML, our combined approach achieves a sub-
stantial 31% enhancement compare to traditional methods in energy resolution for data reconstruc-
tion beyond 100 TeV. This outperforms conventional techniques in primary energy reconstruction
and particle arrival direction estimation. Notably, our method reduces cosmic ray background by
30% while effectively preserving essential gamma events compare to traditional methods. The
success owes much to GNN-based energy reconstruction, further enhanced by AutoML’s ability to
assimilate critical details like air shower size, secondary cosmic ray distributions, detector density
patterns, core position, zenith angles, and more.

GNNs excel in handling complex relationships within graph-structured data, as illustrated by
the hexagonal detector configuration of the Tibet ASgamma experiment. This sets them apart from
traditional matrix representations and bridges gaps left by convolutional neural networks.

Moreover, AutoML emerges as a robust tool to navigate the array of machine learning techniques
available. It simplifies model selection, configuration, and optimization, making machine learning
more accessible and efficient for non-experts. Automation streamlines data preprocessing, feature
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engineering, model selection, hyperparameter tuning, and ensemble creation, reducing manual
intervention and accelerating model development.

The success achieved in the Tibet ASgamma experiment extends beyond, offering insights for
particle physics and astrophysics. The combined power of GNNs and AutoML demonstrated here
lays the groundwork for future advances in a variety of research domains, showcasing their potential
for addressing the challenges of event reconstruction and identification.
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