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The Wide Field-of-view Cherenkov Telescope Array (WFCTA) of Large High Altitude Air Shower
Observatory (LHAASO) is designed to perform nearly calorimetric measurements of extensive
air showers induced by cosmic rays with energies between 1013 eV - 1018 eV. In order to achieve
an end-to-end calibration of WFCTA and investigate properties of the atmospheric aerosol, five
laser systems have been operated at LHAASO, including 3 nitrogen and 2 Nd:YAG laser devices.
This work presents an overview of the laser signals received by the telescope and the monitoring
of geometric information related to nitrogen laser events. Additionally, it introduces the simula-
tion method for the LHAASO-WFCTA laser calibration system. Through prolonged and stable
operation, a substantial amount of data has been accumulated, requiring further data analysis for
the calibration of the telescope’s absolute gain and measurement of aerosol extinction coefficients.
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1. Introduction

, L5

Figure 1: A LHAASO layout, positions of WFCTA, WCDA and KM2A are shown. Dashed lines indicate
the outer edge of LHAASO and positions of laser facilities (L2, L3, L4, L5) are marked by red stars, L1
serving as a portable laser conducted experiments at various locations outside the base. L2, L4 and L5
utilized a nitrogen molecular laser, L1 and L3 employed a Nd:YAG laser.

The Large High Altitude Air Shower Observatory (LHAASO) [1, 2], locate in Haizishan Na-
tional Natural Reserve with an altitude of 4410 𝑚 a.s.l., China. LHAASO consists of 3 major
interconnected components, Kilometer Square array (KM2A) [3, 4], Water Cherenkov Detector
Array (WCDA) [5] and the Wide Field of view Cherenkov Telescope Array (WFCTA) including 18
telescopes [1]. The main scientific goal of WFCTA is to probe cosmic ray spectra within the range
of 10 TeV − 1 EeV together with WCDA and KM2A [6].
WFCTA observes primary cosmic rays by recording Cherenkov lights induced in extensive air
shower. Photons are focused by spherical mirrors on the SiPM camera surface, where they are con-
verted into electric pulses digitized by flash analogs-to-digital converters (FADCs). Atmospheric
parameters have an impact on both production of Cherenkov photons and their attenuation towards
WFCTA [7–11]. Thus, it is required to monitor the atmospheric quality and photon collection
efficiency for WFCTA.
Laser calibration system of LHAASO consists of 3 nitrogen laser sites and 2 Nd:YAG laser sites [12–
16]. Positions of laser sites in LHAASO is shown in Fig. 1. L1 is a mobile laser station that is
dragged behind a carriage to search for fixed locations around the site. Its main purpose is to
measure the local aerosol attenuation length and aerosol scattering phase function of LHAASO. On
the other hand, L2-L5 are fixed stations within LHAASO, primarily used to measure the absolute
gain of the telescopes and aerosol parameters.
This work discusses laser events collected by WFCTA in the second section and the laser simulation
program in the third section.
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2. Laser signals received by the telescopes
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Figure 2: The schematic diagram of laser emission shows a yellow shaded area of height ℎ, which represents
the region with significant aerosol impact. The purple line segment in the bottom left corner represents the
laser emitter, and the trapezoid in the bottom right corner represents the telescope frame.

The process of laser propagation is shown in the Fig. 2. The intensity of the laser beam at a
point is given by:

𝐴𝐷𝐶 = 𝑁 · Gain = 𝑁0 · 𝑒−(𝜏𝑚+𝜏𝑎 ) · (Δ𝜏𝑚 · 𝑃𝑚(𝜃, 𝜑) + Δ𝜏𝑎 · 𝑃𝑎 (𝜃, 𝜑)) · ΔΩ · Gain (1)

where 𝐴𝐷𝐶 is total signal of elementΔ𝑙 on the scattering path, 𝑁 is total photon arrived at telescope,
𝐺𝑎𝑖𝑛 indicates the collection efficient and the response of electronics, 𝑁0 is number of photons per
laser pulse, 𝜏𝑚 and 𝜏𝑎 are due to molecule and aerosol respectively, Δ𝜏𝑚 and Δ𝜏𝑚 is optical depth
in Δ𝑙 of air molecules and aerosol. 𝑃𝑚(𝜃, 𝜑) and 𝑃𝑎 (𝜃, 𝜑) is phase function of Rayleigh and Mie
scattering , ΔΩ is solid angle of Δ𝑙 towards telescope.
The laser is emitted at an elevation angle of𝛼 and propagates through distance of 𝐿 in the atmosphere
before entering the telescope field of view with a central elevation angle of 𝛽. After scattering at
an angle of 𝜃, the laser propagates a distance of 𝑙 before entering the telescope.
During the data acquisition period of the WFCTA, the laser scans the field of view of the telescope
at the specified angle. The propagation of laser beams through the atmosphere into the telescope’s
field of view involves interactions with air molecular and aerosol present in the atmosphere. As
the laser beam interacts with these particles, scattering occurs, and the photons scattered in the
direction towards the telescope are recorded. The telescopes are pointed at different azimuth angles
with the same elevation angle. In order to calibrate all the telescopes and measure the vertical
distribution of aerosol, the laser cruising scheme includes elevation ranging from 10° to 40°, with
multiple azimuth angles for each elevation angle. Taking the L2 laser station for example, with an
elevation angle of 30°, there are a total of 7 azimuth angles to cover all the telescope’s field of view,
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as shown in Fig. 3. Each azimuth angles continuely emitting laser for one minute with a frequency
of 1 𝐻𝑧.
The laser track in WFCTA is shown in Fig. 5 (a). In order to analyze geometric stability of laser
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Figure 3: FOV of WFCTA and laser tracks pass through FOV of 18 telescopes outlined by the lines. The
dashed arcs indicate zenith angles of 20°, 30°, and 40° from middle to edge, which covers 360° in azimuth.
Different color lines indicate series of laser angle tracks with different laser emission azimuths at the zenith
of 60° from L2. In the graph, the north direction is represented by an azimuth angle of 0°, and the positive
direction is clockwise.

event, signals obtained are fitted with a straight line and calculate the slope and intercept of the line
as shown in Fig. 5 (a). The geometry of laser events is related to the laser hardware and telescope
direction, and the analysis of geometric data can be used to monitor the working status of the laser.
The long-term geometric data of laser events is shown in the Fig. 4. The geometry of the laser
events shown in the diagram correspond to the orange line in Fig. 3.

3. Simulation of calibration

The Monte Carlo simulation of laser consists of three parts: photon generation, propagation
and detection [10].
The visual representation of laser event imaging generated by the Monte Carlo simulation method
and experimental data imaging is illustrated in Fig. 5. Through the investigation of the simulation
system, it has been found that the system can effectively replicate the experimental data and perform
imaging. This indicates that the simulation system accurately models the real-world scenarios and
provides reliable results in terms of data and imagery.

The photon generator includes simulations of laser spot size, spot divergence, polarization,
photon number, pulse duration, wavelength and emission angle. The emission angle of the laser is
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Figure 4: Long-term monitoring of the geometric information of laser events recorded by the telescope.
The data presented in the figure is derived from the angle indicated by the orange line in Fig. 3, with an
elevation angle of 30° and an azimuth angle of -64°.
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Figure 5: The images of the laser event for experimental data (left) and simulated data (right) of the same
angle. This laser event originates from the L2 laser site, corresponding to the orange line at azimuth angle
of -64° in Fig. 3. The experimental data is presented on the left side, while the simulated data is shown on
the right side. The black line in the figure represents the fitting line of the image intensity.

changed by the high-precision 3D Lifting Rotating Platform (HiRoP) [17].

In the simulation of the photon propagation, the atmosphere is considered as two parts: air
molecule and aerosol. The absorption and scattering of air molecule is described using the US
Standard Atmosphere Model in the simulation. The scattering model for air molecules uses the
Rayleigh scattering curve, while the scattering model for aerosols uses the Elbert model and the
Longtin model under different wind speeds[18, 19]. Fig. 6 illustrates the Rayleigh scattering and
the aerosol scattering phase functions of different models. The aerosol scattering phase functions
have undergone normalization processing.
The telescope’s detection simulation employs the same program as the cosmic ray simulation [20].

In Monte Carlo simulations, the geometric trajectory of the laser is well understood. Fig. 7 shows
the differences in geometry between simulated and experimental data for various emission angles.
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Figure 6: The scattering probability distribution as a function of scattering angle used in the simulation
program is shown. The black line represents the probability distribution of Rayleigh scattering, while the
red to blue lines represent the Mie scattering probability distributions for the Elbert model and the Longtin
model at different wind speeds, respectively.

The discrepancy in intercepts between the imaging fits of experimental and simulated data is within
±0.3°, while the difference in slopes is within ±0.8°. This indicates that we can employ a set
of turntable parameters to achieve directional reconstruction of all telescopes and laser emission
angles within the required accuracy for the experiment.
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Figure 7: The figure displays the geometric difference between experimental and simulated data. The left
panel shows the difference in intercepts, while the right panel shows the slopes.

To validate the accuracy of the Monte Carlo simulation, we have also developed a analytical
method to calculate the propagation of laser beams. The analytical method employed allows for
numerical calculations of the photon propagation process. It can provide preliminary validation of
Monte Carlo simulation results concerning the overall generation, propagation, laser track geome-
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try, and total photon number. However, this method does not encompass the simulation of internal
characteristics within the telescope or the rendering of imaging.
After performing calculations, it has been observed that the total number of photons in the laser
events generated through Monte Carlo simulations corresponds to the distribution of photons along
the long axis of the laser events. These results align with the outcomes obtained through the
analytical computational method. The analytical computational method can be employed for swift
processing of laser events and for validating simulated results.

4. Summary and Prospects

After a prolonged period of operation, we have accumulated geometrically stable data and
developed a simulation program to assist us in further refining the calibration of telescopes and
aerosols. Geometric of laser event is well understood.
In the subsequent stages of our work, we will continue to advance in data and laser simulation anal-
ysis. To obtain calibration results for the absolute gain of the telescope and the aerosol extinction
coefficient, we will first identify periods with preference clear nights, then analyze the variations in
photon counts between these selected days and other days. By comparing the differences in photon
counts, we can investigate the factors contributing to these variations.
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