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Machine learning model for separation of muons from
punch-through hadrons in EAS at GRAPES-3
experiment
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Gamma Ray Astronomy at PeV EnergieS-phase 3 (GRAPES-3) is a cosmic ray experiment with
an array of extensive air shower detectors and a muon telescope. The primary goal of the
experiment is the precision study of the cosmic ray energy spectrum, its nuclear composition and
also multi-TeV 𝛾-ray astronomy. The punch-through hadrons produced near the air shower core
can lead to problems in the precise estimation of the number of muons and hadrons which is an
essential parameter for reconstruction. Machine learning (ML) can prove to be immensely useful
in distinguishing between different particle types which will significantly improve the physics
analysis of the GRAPES-3 experiment. In this work, we have tested the feasibility of using
Boosted Decision Trees (BDTs) for the task of muon-hadron separation at GRAPES-3. We study
the efficiency of BDTs for separating muons from hadrons in extensive air showers detected in the
experiment. We have obtained 89.5 % accuracy in classifying single incoming muon and hadron.
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1. Introduction

High-energy cosmic ray particles interact with the Earth’s atmosphere producing a cascade
of secondary particles giving rise to Extensive Air Showers (EAS) having lateral extensions with
tens of kilometres. The cascades of secondaries can be electromagnetic cascades if produced by
a gamma-ray or electron, or a hadronic cascade if produced by a nucleus or a hadronic primary.
The electromagnetic shower contains only electrons, positrons and 𝛾-rays. On the other hand,
hadronic showers can have three main components: the hadronic component (consists mainly of
pions, kaons and nucleons), the muonic component (produced primarily by charged pions and
decaying kaons) and the electromagnetic component (produced primarily by neutral pions). The
muon content of the air showers plays a pivotal role in determining the mass and composition
of primary cosmic rays (PCRs) and also in 𝛾-ray astronomy. The muon multiplicity distribution
(MMD) exhibits significant sensitivity in determining the composition of PCRs [1], as heavier
primaries generally yield a higher number of muons. PCRs with more than 100 TeV energy can be
studied only by ground-based experiments consisting of detector arrays covering a large area due to
their limited statistics for ballon or satellite-based measurements. Ground-based experiments often
have dedicated muon detectors along with a large array of detectors to detect the electromagnetic
component. The punch-through hadrons, produced mainly near the air shower core can penetrate
the muon detectors and thereby interfere with the precise estimation of the number of muons.

Nowadays, machine learning (ML) is a widely used technique for several tasks in high-energy
physics like event reconstruction, particle tracking and identification etc. ML algorithms, ranging
from traditional methods to deep learning architectures, have revolutionized classification tasks for
many particle physics experiments. Many ground-based cosmic ray experiments have also used ML
for data analysis, pattern recognition and event classification tasks and have observed substantial
improvement in the results. In this preliminary work, we have explored the potential use of Boosted
Decision Trees (BDTs) [2] to separate muon and hadron events in the GRAPES-3 (Gamma Ray
Astronomy at PeV EnergieS s- phase 3) experiment.

2. The GRAPES-3 Experiment

Figure 1: The GRAPES-3 air shower array.

GRAPES-3 is a ground-based EAS exper-
iment located in Ooty, India. It consists of an
array of 400 plastic scintillators with an inter-
detector separation of 8m covering a total of
25000m2 area [3, 4]. It also has a muon tele-
scope (G3MT) [5, 6] with 3712 proportional
counters (PCRs) covering 560m2 of area. The
schematic view of the GRAPES-3 air shower
array is shown in figure 1. The green-coloured
regions show the 16 muon telescope modules
in G3MT. In each muon telescope module, the
PRCs are arranged in 4 layers, where Layer-0
and Layer-3 are the bottom-most and top-most
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layers respectively. The adjacent Layers are arranged orthogonal to each order with a 50 cm sep-
aration between them, which makes it possible for a 3D reconstruction of the muon tracks with
an angular resolution of 4◦. The 15 layers of concrete blocks above layer-0 provide an energy
threshold of 1GeV× sec(𝜃) for incoming muon with zenith angle 𝜃. The concrete is well capable of
shielding most of the electromagnetic components of the EAS. However, hadrons with sufficiently
high energy can interact with the concrete, producing a hadronic EAS with multiple secondaries
capable of penetrating the concrete barrier and depositing energy in the PRCs forming a complex
cluster of hits. The discrete hits can be reconstructed with the muon having multiple tracks, but
the cluster of hits contributes to the early saturation of the muon modules. This problem of hadron
punch through is significantly less (below 2%) when we consider showers having a core beyond 60
m from the centre of the muon modules. In this work, we are trying to correctly classify muon and
hadron events using ML techniques to have a greater precision of the muon content in the air shower.
It is expected that this will substantially improve the muon multiplicity obtained from GRAPES-3,
especially at PeV energies.

3. Boosted Decision Trees

Decision trees are sophisticated supervised multivariate ML technique that has been excellent
candidate for particle identification and classification from their first exploration by the MiniBooNe
collaboration [7]. Single decision trees are regarded as ‘weak learners’ as they are very sensitive to
input data. In boosting methods, many weak learners are combined to result in a robust multivariate
algorithm. The ensemble of base learners (decision trees) ( ℎ𝑘) is generated iteratively in a way that
adding the new learner will minimise the loss function of the entire ensemble of learners. In other
words, successive trees are added to address the mistakes of their predecessors. At each iteration,
the algorithm focuses on the data points that were misclassified in the previous iteration, giving them
more weights (boosting) and adding a new tree based on these weights. As a result, successively
added trees are better at classifying previously misclassified events. The final prediction is a
weighted combination of the predictions of all the weak classifiers. This can be represented by the
following mathematical relation,

𝐹 (𝑥) =
𝑁𝑡𝑟𝑒𝑒∑︁
𝑘=1

𝛼𝑘ℎ𝑘 (𝑥), (1)

where 𝑁𝑡𝑟𝑒𝑒 is the number of base trees, 𝛼𝑘 is the weight associated with the 𝑘 𝑡ℎ decision tree and
𝑥 is the feature space of the event. The base learners (decision trees) are a collection of internal
nodes and leaves. The root node contains all the events with their features. At each successive
node, events are divided depending on whether the value of a particular input feature is above a
threshold. The cut on the input features is chosen in such a way as to maximise the purity of the
split or separability of the signal and background. A boosting algorithm proceeds iteratively finding
the next learner of the ensemble (ℎ𝑖) by minimizing a loss function 𝐿 (𝑦𝑖 , 𝑓 (𝑥𝑖)),

𝑁∑︁
𝑖=1

𝐿𝑛 (𝑦𝑖 , 𝐹𝑛−1(𝑥𝑖) + 𝛼𝑛ℎ𝑛 (𝑥𝑖)) −→ 𝑚𝑖𝑛𝛼,ℎ (2)

by finding appropriate value of the weights 𝛼𝑛, of the new learner. Here, in this equation, 𝐹𝑛−1(𝑥)
is the loss function up to that point. In gradient boosting, the gradient descent algorithm is
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used to minimize the loss function. Extreme gradient boosting (XGBoost) [8] is an optimized
implementation of gradient boosting that incorporates additional algorithmic enhancements, such
as parallel processing and regularization techniques. In this work, we have explored binary decision
tree classifiers implementing the XGBoost algorithm.

4. Data and Input Features

The GEANT4 simulated events for G3MT [6] are used for model training and validation. The
simulation contains EAS corresponding to proton (H), helium (He), nitrogen (N), aluminium (Al)
and iron (Fe) primaries in the energy range 1 Tev to 100 PeV simulated using CORSIKA. PCR
particles were traced to the GRAPES-3 observational level and then injected into the GEANT4
simulated G3MT modules and the corresponding information of each PRC hit was stored in a
ROOT-based framework. In the present analysis, PCRs in the energy range 1000 TeV to 1584.89
TeV for all four modules of station 0 in G3MT is used. In order to avoid class imbalance, an
equal number of muon and hadron events are chosen randomly. The input features are built using
the information on the number of hits, corresponding Layer and Counter information along with
the energy deposited by the particles in the PRCs. The muon/hadron classification task is defined
as a binary classification problem by labelling muons as the positive class (1) and hadrons as the
negative class (0).

Sl. No Input Features Description
1 nHits Total number of hits in one event
2 nLayers Total number of Layers having hit in one event
3 𝐸𝑡𝑜𝑡𝑎𝑙 Total energy deposited in all the Layers in one event
4 𝐹𝐻0 Number of hits in Layer 0 / nHits
5 𝐹𝐻1 Number of hits in Layer 1 / nHits
6 𝐹𝐻2 Number of hits in Layer 2 / nHits
7 𝐹𝐻3 Number of hits in Layer 3 / nHits
8 𝑑𝐸0 Energy deposited in Layer 0
9 𝑑𝐸1 Energy deposited in Layer 1
10 𝑑𝐸2 Energy deposited in Layer 2
11 𝑑𝐸3 Energy deposited in Layer 3

Table 1: Features used for training the ML classification model. Here 0,1, 2,3 represent the corresponding
Layer numbers as in the simulated data file.

The primary input features used are the total number of PRC hits produced by one secondary
(nHits), the number of layers in which energy is deposition (nLayers) during its passage through
one G3MT module and the sum of that energy (E𝑡𝑜𝑡𝑎𝑙) deposited in the PRCs. Additionally, we
have also constructed some features to incorporate the behaviour at each layer basis, which are
listed in table 1 with their definitions. The distribution of input features for both muon and hadron
classes are shown in figure 2. In all the figures, the blue-coloured histograms represent the features
for muons and the red-coloured histograms represent the corresponding feature distribution for
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hadrons. For this study, we have used the XGBClassifier from the Python implementation of the
XGBoost library. 70% of the data is used for training the model and the remaining 30% is used for
testing the model predictions.
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Figure 2: Distribution of input features for muon (blue) and hadron (red) class. The feature definitions are
given in figure 1.

5. Results and Discussions

The primary objective of this work is to obtain the correct number of muons associated with
each EAS. As the preliminary step, we are concentrating on the accuracy with which we can classify
a muon or a hadron associated with the air shower, based on the information available from the
detector output.

The performance of our model is summarized in the form of a confusion matrix (CM) in figure
3a. The CM is a way to visualize the performance of a classification algorithm. The instances
in the actual dataset are represented by each row of the matrix, whereas each column represents
the instances in a predicted class. The BDT model developed can predict 91% of true hadrons as
hadrons whereas 9.3% are misclassified as muons. In the case of true muon events, it can predict
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(a) Confusion Matrix for the BDT model (b) ROC curve of the BDT model

(c) Muon prediction probability (𝑃𝜇) for muon (red) and
hadron class (blue)

Figure 3: The confusion matrix (a), ROC curve (b) and muon prediction probability (c) of the BDT model
using the test data.

88% as muons and the remaining 12% are misclassified as hadrons. The ROC (Receiver Operating
Characteristics) curve for the model is shown in figure 3b. The ROC curve is the plot of the True
Positive Rate (TPR) against the False Positive Rate (FPR) for different candidate threshold values
in the range of 0 to 1. TPR measures the proportion of true muon instances correctly identified as
muons by the BDT model. Whereas, the FNR is the proportion of true hadron instances incorrectly
classified as muons. The area under the curve (AUC) gives an overall performance of the model
and it is a very popular metric used by the ML community to evaluate the model performance. We
have obtained an AUC of 0.96 which indicates that the BDT model has satisfactory classification
ability.

The distribution of muon prediction probability (𝑃𝜇) using the BDT model is shown in figure
3c. The blue histogram is for muon events and the red histogram is for hadron events. If the
threshold probability for selection is considered as 0.5 (which is the default value), then the number
of miss-classified muon events is more than the number of miss-classified hadron events which can
also be interpreted from the confusion matrix shown in figure 3a.
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In this analysis, we consider the case of a single incoming secondary muon or hadron. The
BDT algorithm has achieved a classification accuracy of 89.50% in classifying these hits as either
muon or hadron class.

6. Conclusion

Machine learning techniques can be used to bring significant improvement in the event re-
construction of particles in high-energy physics experiments. In this work, we have explored
the feasibility of using ML techniques for muon/hadron separation in cosmic ray showers at the
GRAPES-3 experiment. We are only considering one incoming secondary particle in the muon
detector at a moment. The BDT model shows good classification capability for both muons and
hadrons.
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