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Supernova remnants are known as efficient particle accelerators due strong non-thermal radiation
emitted by self-produced relativistic electrons, protons and ions. Diffusive shock acceleration
(DSA) operating in these shocks is believed to be responsible for acceleration of high energy
particles. In order for DSA to work, a particle should have a gyroradus larger than the finite width
of a shock. Therefore, thermal electrons require a substantial pre-acceleration before they can cross
the shock within one gyration and be accelerated via DSA. Here we use particle-in-cell simulations
to study microphysics of electron acceleration in oblique high Mach number shocks. In this case,
fast electrons can escape to the shock upstream, modifying the shock foot to a region called the
electron foreshock. We find that the observed electron-beam instabilities agree very well with the
predictions of a linear dispersion analysis: the electrostatic electron-acoustic instability dominates
in the outer region of the foreshock, while the denser electron beams in the inner foreshock drive
the gyroresonant oblique-whistler instability. Both foreshock instabilities play a crucial role in
production of nonthermal electrons via resonant interaction and stochastic scattering. As a result,
the downstream spectrum of electrons is characterized with a pronounced nonthermal tail, making
the injection of electrons into DSA possible, thus enabling electron acceleration to higher energies.

38th International Cosmic Ray Conference (ICRC2023)

Nagoya, Japan ]

The Astroparticle Physics Conference

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:artem.bohdan@ipp.mpg.de
https://pos.sissa.it/

Electron acceleration at oblique supernova remnant shocks Bohdan et al.

1. Introduction

Supernova explosions are known to interact with the interstellar medium, generating high Mach
number shocks associated with intense nonthermal emission. Notably, electrons play a significant
role in producing nonthermal radiation in various bands, including radio, X-ray, and y-rays. The
process responsible for accelerating these high-energy electrons is believed to be diffusive shock
acceleration (DSA), a first-order Fermi acceleration mechanism occurring in the shock transition
region. However, DSA requires pre-acceleration or injection of particles from the thermal pool, a
task more challenging for electrons due to their lower mass compared to ions.

To study electron-scale phenomena responsible for pre-acceleration, we employ high-resolution
two-dimensional particle-in-cell (PIC) simulations, providing a fully self-consistent treatment of
the electron scales. In the high Mach number regime, the dissipation of upstream ion kinetic energy
cannot rely solely on resistive (Joule) dissipation. Instead, a substantial portion of the incoming
ions is reflected back upstream, giving rise to various instabilities in the shock transition. However,
the obliquity angle, 6p,, between the shock normal and upstream magnetic field, significantly
influences shock behavior and ability of particles escape the shock to form the so-called foreshock
region. Oblique shocks permit electron escape or reflection along the upstream magnetic field lines
creating the electron foreshock.

In this proceedings, we present a comprehensive summary of our recent research on oblique
high-Mach-number shocks [1-3]. We outline the most important results, including the characteriza-
tion of electron foreshock structures, the underlying mechanism responsible for electron reflection,
the nonlinear whistler structures, and the modified stochastic shock drift acceleration mechanism.

2. Simulation setup

The work presented here makes use of code adapted from TRISTAN [5] which allows us to study
fully relativistic shocks while tracking 2-spatial and all 3 velocity components (2D3V) of individual
plasma particles [6]. This implementation of the code provides the ability to trace individual
particles, where we can track the components of their velocities and local fields, facilitating a
detailed analysis of the electron acceleration microphysics.

In this study, we employ a reflecting wall setup to generate a shock by reflecting an in-
coming plasma beam from a conducting wall positioned at x = 0 within our simulation box
(Fig. 1). The reflection involves a velocity transformation v, — —v,, while v, and v, remain
unaltered.The upstream plasma is initialized with a bulk velocity of vyps = —0.2¢ £. This up-
stream plasma is initialized with a uniform large-scale magnetic field with a field orientation
described by the obliquity angle, g, and angle relative to the simulation plane, ¢, such that
B = By(cos gy, sin gy, cos ¢, sin Oy, sin ¢) where 0, = 60° and ¢ = 90°. To eliminate Lar-
mor gyration of upstream particles associated with the bulk motion, a motional electric field
E = —vyps X By is initialized. The adiabatic index is set to y = 5/3, resulting in a shock compres-
sion ratio of r ~ 4, leading to a shock velocity of vg, =~ 0.264¢ in the upstream rest frame. This
sets the Alfvénic and sonic Mach numbers as M4 ~ 30 and M ~ 32.5, which are defined in the
upstream reference frame. The plasma beta value, which denotes the thermal-to-magnetic energy
density ratio in the upstream region is § = 1. The ion-to-electron mass ratio is set to m; /m, = 50.
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Figure 1: Simulation setup.

To ensure adequate resolution of all important timescales in our simulation, we adopt a sim-
ulation timestep of 6t = 1/16, a)ljel and a resolution of A = c/wpe = 8A, where A represents the
size of one cell in our simulation grid. The number of particles per cell per species is Nppe = 40.

3. Shock structure

In oblique shocks, fast electrons can escape towards the upstream region generating electrostatic
and electromagnetic waves. It leads to formation of A broader shock transition and the formation of
a turbulent foreshock region that extends far into the upstream flow. The mechanism responsible for
electron reflection involves shock surfing acceleration on Buneman waves [7], followed by magnetic
mirroring [2]. The density of reflected electrons is approximately 1% close to the shock, and it
decreases significantly farther upstream (Fig. 2(b)). The electron-density profile of the fully formed
shock (¢t = 18.19;1), shown in Fig. 2, suggests that the simulation domain can be divided into a
downstream region (x/As < 1000), the shock transition (1000 < x/Ase < 1100), the foreshock that
can be subdivided further according to the fluctuating field components (1100 < x/Ase < 4000),
and the upstream plasma which contains the undisturbed plasma (x/1s = 4000).

The foreshock region contains the shock-reflected electrons that stream through the background
electrons with a mean velocity of v4. = 0.9¢ along the upstream magnetic field lines. We derive
parameters describing the phase-space distributions of the upstream and the reflected electrons for
the selected regions of the foreshock where electrostatic and electromagnetic waves are present, and
use linear dispersion analysis and PIC simulations with periodic boundaries to explore the nature
of observed waves [1].

The inner foreshock region exhibits oblique waves with wavelengths between 304, and 504,
characterised by significant magnetic components (Fig. 2, bottom left panel). These electromagnetic
waves closely match the predictions of linear theory for the fastest-growing mode of the oblique-
whistler instability. Remarkably, this electron-electron mode effectively explains the simulation
results with periodic boundaries. However, differences in the parallel velocity distribution cause
the spectral peak to shift from the second-order gyroresonance (as predicted by the linear model)
to a larger parallel wave number, closely associated with the third-order gyroresonance.

In contrast, the outer foreshock region features a quiescent magnetic field but exhibits strong
electrostatic fluctuations with a wavelength of 1 ~ (3 — 4) A (Fig. 2, bottom right panel). These
electrostatic waves are attributed to the electron-acoustic instability. After modifying its linear
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Figure 2: Map of the electron density (a), the histogram of the x — p, phase-space density electrons (b).
Two bottom panel shows representative field structures of whistler (bottom left panel) and electron-acoustic
(bottom right panel) waves.

dispersion relation to account for a Gaussian momentum distribution, we find excellent agreement
between linear theory and the periodic-boundary-condition simulations with parallel configuration.
While solving this modified dispersion relation for oblique propagation directions poses challenges,
we nevertheless attribute the presence of outer-foreshock waves to the electron-acoustic instability
as well.

4. Electron acceleration mechanisms

Using particle tracing data, we have identified several mechanisms contributing to electron
acceleration in oblique shocks. Firstly, electrons can be deflected back upstream by electron-acoustic
waves. Secondly, nonlinear whistler waves have the capability to capture reflected electrons and
bring them back to the shock. Lastly, stochastic shock drift acceleration (SSDA) plays a crucial role
in producing the most energetic particles.

4.1 Interaction with electron-acoustic waves

By tracing the trajectories of electrons, we have observed instances where electrons do not
reach the shock transition but are still turned back upstream in the region where only electrostatic
waves are present. For magnetic mirroring to be the mechanism responsible for reflection, we
need a converging magnetic field, which is not present in the electrostatic foreshock. In this case,
it is possible for upstream electrons to become trapped in the potential wells of the EAWs if the
potential difference is sufficiently large. Acceleration by the motional electric field when trapped
leads to an increase in perpendicular momenta. Subsequent acceleration by the motional electric
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field while trapped leads to an increase in perpendicular momenta. Additionally, electrons can
experience acceleration by the on-average parallel electric field. As a result, interactions between
these electrons and the EAWSs can further divert them away from the shock. Note, that this process
is not very efficient, because it accounts for about ~ 1% of reflected electrons in case of g, < 45°
and can be fully neglected in shocks which higher obliquity, e.g., g, < 60° [2].

4.2 Interaction with nonlinear whistler waves

The behavior of the initial whistler wave structure can be appropriately described by linear
analysis [1], at later times in the simulations they develop into non-linear wave packets, with a
complex internal structure. These structures can be visible close to the shock transition in Figure 2
and they are represented as under-dense cavities where the plasma density drops to n/ng ~ 0.15.

The shock reflected electrons can interact with non-linear structures and become trapped.
During this process, the electrons are carried towards the shock since they are unable to escape,
until the non-linear wave encounters the shock ramp. We note that the Larmor radius of reflected
electrons that are trapped by whistler waves need to be smaller in size relative to the whistler
wave. Typically, the gyroradii of the reflected electrons fall in the range of 1 — 54, though they
can occasionally approach 104g;. This comparison implies that the ratio of the reflected electron
gyroradii to the radius of the non-linear structure lies within the range of 0.1 — 1. While the
magnetic field amplification associated with these non-linear structures can contract the electron
gyroradii upon encountering them, it may not be sufficient to allow the non-linear structures to trap
the most energetic reflected electrons. In reality, the probability of trapping is expected to decrease
exponentially as the gyroradius approaches the radius of the non-linear structure, ryi, such that
Pirap exp(—rge / rnls) [3]. However, we must also consider the fact that the size of the whistler
region, from which these non-linear structures arise, grows with time [1]. We estimate that the size
of this region would reach a steady state at Qi ~ 125. At this time, the whistler-containing region
would extend to around 20004; ahead of the shock. Within this context, we anticipate the trapping
probability to increase until Q;¢ ~ 125 for all reflected electrons with gyroradii small enough to be
contained by the non-linear structures.

4.3 SSDA

Another candidate acceleration mechanism in oblique shocks is shock drift acceleration (SDA)
[8, 9]. This mechanism comes into play when an electron gyrates close enough to the shock ramp,
causing part of its orbit to overlap with a region of enhanced magnetic field, thereby tightening
its gyroradius during these intervals. The gradient in the magnetic field results in a drift effect
akin to VB drift, with work done by the motional electric field. While SDA efficiently energizes
electrons, it alone is not sufficient to account for the observed power-law spectrum and fluxes
of accelerated electrons in astrophysical sources. The limitation arises because, in the original
SDA theory, candidate electrons are not confined to the shock transition region where acceleration
occurs, thereby limiting the efficiency of the mechanism. One way to address this limitation is
by incorporating pitch angle scattering, with electrons scattering off whistlers, as observed in the
Earth’s bow shock [10]. To enhance the time spent in the acceleration region and consequently
increase the energy gain, [11] proposed the stochastic shock drift acceleration (SSDA) mechanism,
which integrates pitch angle scattering into the SDA model. Subsequent evidence of SSDA has
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Figure 3: Panel (a): the temporal development of the kinetic energy of the sample electron. Panel (b): the
change in Lorentz factor as a function of Ay /A at Qit = 51.5 for the traced electrons. The negative average
Ay typically occurs for electrons that have passed into the downstream. The location of the sample electron
is indicated by the red circle. Under the assumption that the work done to cause the acceleration comes from
the motional electric field, SSDA predicts Aysspa = g EoyAy/ (mec?) (purple dashed line), the energy gain
for the most energetic electrons is about 4 times greater (green dashed line).

been found in both 3D PIC simulations [12] and observations supporting electron scattering by
whistler waves [13].

This picture is consistent with acceleration of the sample electron. In panel (a) of Figure 3, it can
be observed that this particular electron undergoes two periods of rapid and efficient acceleration,
separated by a period of relative quiescence. Atapproximately Q;t = 41, the electron first encounters
the shock and undergoes acceleration, which is indicated by the cyan panel and its corresponding
color-matched sub-panel. During the phase of constant energy, the electron travels upstream,
including the time when it is trapped by the non-linear structure. This suggests that the primary role
of such structures is to confine electrons within the acceleration region. The last acceleration phase
occurs during the electron’s second encounter with the shock, highlighted with the salmon-pink
color. The signature of SSDA is that the change in energy is directly proportional to the motional
electric field. In our magnetic field configuration, electrons drift in the + direction. From Panel
(a), it can be observed that for the salmon-pink region, the predicted Ay (dashed black line) closely
agrees with the measured values (solid red line), confirming the occurrence of SSDA during this
acceleration stage. However, the presence of non-linear structures further complicates this picture,
and the acceleration during the first phase of the sample electron cannot be fully described by
SSDA. The cyan panel shows the measured Ay (blue solid line) and the analytical Ay (black dashed
line) as a function of Ay for the first acceleration period. Although there are instances where the
energization rate can be attributed to SSDA, Ay is also shown to increase for Ay < 0. This behavior
is also evident in the subset of the most energetic traced electrons in Fig. 3(b). It indicates that they
generally exhibit a linear relationship between Ay and Ay, similar to the sample electron shown in
Figure 3 by the red circle. However, on average, the acceleration is about four times more efficient
(dashed green line) than what can be accounted for solely from SSDA via the motional electric field
(dashed purple line) [3].

The precise details of the underlying microphysics of the acceleration are likely a consequence
of the complex non-linear structures arriving at the shock. Indeed, the non-linear structures arriving



Electron acceleration at oblique supernova remnant shocks Bohdan et al.

"015 T T T T E

i Perpendicular ]

10%F ; E

: Oblique E

10T

= 107

107°0 o L ]

1072 107 10° 10
(=1

Figure 4: Downstream electron spectra for oblique (blue) and perpendicular (red) shocks.

at the shock also perturbate the local electric fields, with E\ /Eq, ranging from +15 in the cyan
region of Figure 3(a), yet averaging at E,/Ey, ~ 1. The overall acceleration is therefore highly
sensitive on local values and orientations of the electromagnetic fields.

5. Downstream electron distribution

Figure 4 illustrates the downstream electron distribution for both oblique and perpendicular
(BBn = 90°, [14]) shocks. Remarkably, the nonthermal electron population is much more prominent
in oblique shocks, primarily due to the efficient acceleration via modified SSDA. High-energy
electrons follow a power-law distribution with an approximate index of up to -2.7. The fraction
of electrons not covered by the thermal distribution accounts for about 0.8% of the downstream
electrons, yet they hold around 7% of the total downstream electron energy. The low-energy part
of the spectra is represented by a Maxwellian distribution. The electron-to-ion temperature ratio is
approximately 7. /T; = 0.17, which closely aligns with the values observed in perpendicular shocks
with similar shock parameters [15].

6. Conclusions

* The foreshock region exhibits both oblique waves with a magnetic component in the inner
region and strong electrostatic fluctuations with k-vector along the x axis in the outer region.
These waves are generated by the shock-reflected electrons streaming through the background
plasma along the upstream magnetic field lines.

* The observed electron-beam instabilities agree very well with the predictions of a linear
dispersion analysis, therefore, the electrostatic electron-acoustic instability dominates in the
far upstream of the foreshock, while the denser electron beams in the near upstream drive the
gyroresonant oblique-whistler instability.
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* A number of mechanism contribute to electron acceleration in oblique shocks, such as
reflection by electron-acoustic waves, capturing by nonlinear whistler waves and SSDA.

* SSDA produce the most energetic electrons and SSDA appears to be 4 times more efficient
than theoretical prediction. We associate this high efficiency with the presence of nonlinear
whistlers in the region where acceleration occurs.

* The downstream electron distribution exhibits a pronounced nonthermal population, resulting
from efficient acceleration via modified SSDA. High energy electrons follow a power-law
with an approximate index of -2.7.
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