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Shower-disc structures of the gamma-ray shower are investigated by analyzing Monte Carlo
simulated showers based on the multiple scattering theory of Yang for actual path-length. We
investigated the radial distribution of shower electrons with given delays of path-length, and found
the density of the relevant electrons keeps almost constant near the shower axis and drops with
the increase of radial distance reaching rapidly to null at the edge of shower-disc, We propose
structure functions of the shower-disc, composed of the longitudinal distribution function with
the radial distribution integrated and the radial distribution function with the delay of path-length
fixed.
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1. Introduction

The diffusion equation for the actual-path-length distribution of electrons traversing through
matters was proposed by C.N.Yarij fnd was generally solved by uU2][ A Monte Carlo (ab-
breviated as MC, hereafter) code to obtain the arrival time distribution of cascade shower particles
was developed applying the above solution, and some results were reported at Bai3jaode [
at La Jolla (as a lated pap@j] conferences. This time we investigate the shower-disc structure of
particles by carrying out the code in usual PCs.

2. Location distribution of electrons in the gamma-ray shower

We investigate the location distribution of electrons in our MC events of gamma-induced cas-
cade shower (abbreviated as gamma-ray shower, hereafter).

First, we define the "geometrical front" of shower at the penetration depthythe surface
of sphere with the radius dffrom the start point of gamma-ray shower, as indicated inEig.
Next, we define the "front plane" of shower by the plane vertical to the shower axis and tangential
to the geometrical front. We define the "del&y of the shower particle by the distance from the
front plane of the shower. Then the delayf the shower particle on the geometrical front satisfies

A=t—+\/t2—r2~r2/(2t), (2.1)

wheret, r, andA are all measured in the radiation lend8].

We carried MC simulations of gamma-ray shower, in the air of uniform density with the radi-
ation lengthXy of 308 m and the critical energyof 81 MeV, with the incident energyp = 10%¢
of primary gamma-ray and the threshold energg@f'c (called as G41 series, hereafter). We plot
MC shower electrons in Fi@ at the penetration depth®f 5, 10, 15, and 20 with the horizontal
and the vertical coordinates af(7), where the crowded rates of the plots toward the horizontal
direction and the vertical direction become proportional to the areal deshsitytdr?) and the
delay densitydn/dA of electrons. We draw the geometrical front by the solid line, upward from
which electrons locate in the figure.

When we fix the square of the radial distamégwe see the density of electrons increases very
rapidly upward after the geometrical front, it reaches to some peak, and it decreases slowly with
the increase oAA. On the contrary when we fix the deldy the density shows almost constant
near the shower axis{ < 1) and it decreases slowly with the increasefip to the geometrical
front. To confirm this character precise, we convert Bitp Fig.4 by plotting the electrons with
the coordinates ofrf/(2tA),A), with the horizontal coordinate normalized by the square of the
radius of the geometrical fror&A. Then we find in Fig4 the density of shower electrons falls
almost similarly with the dela of vertical coordinate irrespective of the horizontal coordinate of
r?/2tA, though withA fixed the density keeps almost constant near the showerrdy24 < 1)
and decreases very rapidly just before reaching to the geometrical ffgat4 — 1). We analyze
disc structures of gamma-ray shower, mainly according to these characters.
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Figure 1: The geometrical front of shower elec-
trons at the penetrating depthtofThe geomet-
rical front shows trivial delay of ~ r?/(2t) atr
from the tangential plane at the shower front.

Figure 2: The u-weighted probability densities,
udP/du, for the delayu = 2¢2A/EZ att = 5, 10,
15, and 20.

3. The structure functions of shower electrons

Based on the investigations in the last section, we assume the infinitesimal proluipiliy
the shower electrons to deldyand to spread from the shower axis as
_dP(AY)

dQ(r;4)
2
Tp=—gn B

2rmdr, (3.1)

wheredP(A;t) /dA denotes the probability density to delAywith the radial spread integrated
(the longitudinal distribution) andQ(r;A) /dr denotes the probability density for the spr&auth
the delayA fixed. So that the densities denoted as the "structure functions" are normalized as

*dP(At) © dQ(r;A) B @ e d2p B
/0 da=1, /o 22omdr =1, and /0/0 Adnammdr =1 (32)

3.1 The longitudinal distribution dP(A;t)/dA of shower electrons

We derive the probability density of shower electrons to délaly analyzing MC showers
of G41 series at =5, 10, 15, and 20 cu with the radial spreaithtegrated. We introduced a new
variable

u=2A/r3  with (3.3)
v =Es/€ (3.4)

of the Moliére unit|g], and investigated the probability of electrons in 100 MC showers to fall into
80 bins ofu, equally divided logarithmically from0~6 to 10%. Theu-weighted probability density
udP/duis indicated in Fig2 (dots).

In some analyses, thedistribution of (a1 /I (n+- 1))t"e3'dt was assumed as a probability
of the delayt for cascade-shower particlég B]. Thel distribution can reproduce the probability
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Figure 3: Scatter plot of electron Figure 4: Scatter plot of electron
tracks indicating vs r? att = 5, 10, tracks indicatingd vs r?/(2tA) att =
15, and 20, from top to bottom. 5, 10, 15, and 20, from top to bottom.

derived by MC in the early-stage of shower-development, though it falls too rapid in the tail-
stage as analyzed in all-charged-particles investigati@nand cannot reproduce the MC results
of power-law decrease. So that, we assume the probability density as a Beta distribution of

_dpPiat) o dPut) 1 —ab
=~ dA = au du_mu (14u) du (3.5)

dP
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with B(a,b) =T (a)l (b)/I (a+ b) of Beta function. Then they satisfy

(uy+1

— =(b-1 . .

@ g A=W @9

We show in Table 1 the values afandb derived from 100 MC showers of G41 series, and show
the probability density of the delay fror8.€) in Fig. 2 (lines) applying thesa andb, which well
reproduced the density derived by MC.

. a o, a+l B
<u>_—b_l, (u >——b_2(u>, thus b=2-+

3.2 The radial distribution dQ(r;A)/dr at fixed delaysA of shower electrons

We investigate thél — r2/2tA)-weighted probability density ofL —r?/2tA) in Fig./5 (dots)
counting the shower electron to fall on the 100 binglof r?/2tA), equally divided logarithmically
from 0.1 to 1, for respective 9 ranges &f(distinguished by different 9 dots), equally divided
logarithmically from10->0 to 1072, We express the probability density @ — r?/2tA) by the
power function of

B dQ r2y\ r2 \"1 r2
dQ_d(l_rz/zm)d<1—2m)_h<l—2tA) d<1—2m>, (3.7)

whereh is normalized as the total electron number to be 1. Then it satisfies

r2 h 2\t
<1_2tA>:h+1’ thus h:l/{<1—2m> —1}. (3.8)

We drew the(1 — r2/2tA)-weighted probability densitia(1 —r?/2tA)" derived from Eq.8.7) in
Fig.5 (lines) applying the respectiieat 9 ranges oA mentioned above derived from 100 MC
showers of G41 series, which well reproduced the MC results. We also found that the power index
of hdoes not depend ahwhen the number of electrons is much enough inAliange,

Thus we get the structure function for the probability density of radial spreddhe fixed
delayA. Introducing a new variable

v=r2/r, (3.9)

we haver?/(2tA) = v/(tu). Then Eq.8.7) gives

dQ= d(S/Qtu)d (%) =h(1- %)hfld (%) with 0< % <1, (3.10)
where it satisfies
<t\;>:hi1 thus h:<%>_1—1. (3.11)

We show the power indelx evaluated from 100 MC showers in Talile We drew the structure
function for the radial distribution with the delay fixed, or ttwtu)-weighted probability densities
(v/tu)dp/d(v/tu) determined in Eq.3.10), in Fig. 6 (lines) witht separated by 5, 10, 15, and

20 and applying the value df in the Table. The derived structure functions well reproduce the
indicated radial distributions with the delay fixed (dots) appearing in the electrons in 100 MC
showers.
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Figure 5: 1—v/tu=1—r?/2tA distribution at varioug regions derived from electrons in 100 MC showers,
att =5, 10, 15, and 20A is divided to 9 regions, [-5.0,-4.5], [-4.5,-4.0},-, [-1.0,-0.5] inlog, values.
1—v/tuis distinguished in 100 bins from 0.1 to 1, equally divided logarithmically.

4. The shower-disc structure of electrons reproduced by the structure functions

4.1 Reproduction of the lateral distribution of the shower electrons

We derive the probability density @f't from 100 MC showers of G41 series, by counting the
shower electrons to fall on the 80 binswt, equally divided logarithmically from0~7 to 10. The
results are indicated in Fig.(dots) fort = 5, 10, 15, and 20, witki/t weighted.

On the other hand, we derive the lateral distribution from the assumed structure functions of
(3.5 and B.10);

v\ [© dQ dP(uit)du  hd(v/t) [* 5 o v/t h-1
dp_d(t)/\,/td(v/tu) du u _ B(ab) /V/t“ “1+y) b<1_u> du (4.1)

Thus the(v/t)-weighted probability density is expressed as

a o0 a2 —a-b h-1
(v/)dp _ hiv/t) / el 1404 =YY g (LY @)
d(v/t)  B(ab) J1 \v/t t v/t u v/t
The results derived by numerical integrations are indicated iri/<iqes), which well reproduced

the MC results fot = 5, 10, 15, and 20.
The central propertiev(t — 0) of the lateral distribution 014.2) are described as

S () () () S e

Table 1: Parameters, b andh, derived from 100 MC showers.

t (CU) 5 10 15 20 25
a 0.28 0.50 0.69 0.83 1.02
b 2.81 2.76 2.62 2.54 2.66
h 8.59 9.46 9.19 9.65 8.92
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Figure 6: The (v/tu)-weighted probability densi-  Figure 7: The radial distribution of shower elec-

ties(v/tu) dQ/d(v/tu) for the normalized squared-  trons expressed kiy/t)-weighted probability den-
radial-distance of//tu = r?2/2tA att = 5, 10, 15, sity for the normalized squared-radial-distance of

and 20. v/t = (r?/rg)/t att =5, 10, 15, and 20.

We find the central power profiles 6f/t)3~1 of the lateral distribution well agree with the starting
power profiles o2~ atu — O for the longitudinal distribution of3.5).

4.2 Reproduction of the probability densities of delay at fixed radial distances

We count the shower electrons in 100 MC events to fall on the 60 bins of ddagA/rﬁ,
equally divided logarithmically frord0~* to 10, for respective 10 ranges of radial distagée=
r/rm =~ r/308m equally divided from 0 to 1. Then we get the probability densidgs/d(v/t) /du
fort =5, 10, 15, and 20 by dividing the counts with the total number of electrons in the respective
ranges of,/v, as indicated in Fig8 (dots) withu weighted, separating the rangeswofvith the
respective symbols of dot.

On the other hand, we evaluate the infinitesimal probability of shower eledmtsfall on
the bin ofdu from the assumed structure functions B8fZ) and B.10), for the respective finite
ranges od(v/t) = [vo/t,v1/t];

tu

vi/tu . a—1 —a—b (vi/t)/u h-1
dp—au [ GPWY_GQ_q vy W E+Y d”/ 1 h(l—v/t> . (4.4
(

Wi du d(v/tu) B(a,b) Yo/t)/u u u

So that we can derive the respective averaged electron densities in the finite rad(e$)adit the
averaged radial locations 0¥y + v1)/2/t;

d 6p  wWl4u) P vo/t\" vi/t\"] /vi—vo
“ausvt) —  Blab) {(1_u> _<1_u> }/ o @)

The results fot = 5, 10, 15, and 20 are drawn in Fi8.(lines), which well reproduce the MC
results.
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Figure 8: The delayu = 2A/r§ distribution of shower electrons at fixed squared-radial-distances=of
r2/r2,, expressed by-weighted probability densitiesd?p/d(v/t)/du att = 5, 10, 15, and 20.

5. Conclusions and discussions

From 100 MC gamma-ray showers of G41 seriég £ 10%¢ andE > 10 1¢) in the uniform
air medium, we got the structure functions of gamma-ray showers which are the probability density
for the delay (1-dimensional) and the density for the lateral spread at fixed delays. We assumed
Beta distributions for the both densities with the parametgosandh determined by MC showers
from the first and the second moments of the probability densities. We could reproduce the lateral
distribution and the delay distribution at fixed radial spreads, which well reproduced the distribu-
tions derived from MC showers. This investigation started from the discussions between one of the
authors (T.N.) and late John Linsley with mail, after La Jolla conference (1985).
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