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1. Introduction

The diffusion equation for the actual-path-length distribution of electrons traversing through
matters was proposed by C.N.Yang [1] and was generally solved by us [2]. A Monte Carlo (ab-
breviated as MC, hereafter) code to obtain the arrival time distribution of cascade shower particles
was developed applying the above solution, and some results were reported at Bangalore [3] and
at La Jolla (as a lated paper [4]) conferences. This time we investigate the shower-disc structure of
particles by carrying out the code in usual PCs.

2. Location distribution of electrons in the gamma-ray shower

We investigate the location distribution of electrons in our MC events of gamma-induced cas-
cade shower (abbreviated as gamma-ray shower, hereafter).

First, we define the "geometrical front" of shower at the penetration depth oft by the surface
of sphere with the radius oft from the start point of gamma-ray shower, as indicated in Fig.1.
Next, we define the "front plane" of shower by the plane vertical to the shower axis and tangential
to the geometrical front. We define the "delay∆" of the shower particle by the distance from the
front plane of the shower. Then the delay∆ of the shower particle on the geometrical front satisfies

∆ = t−
√

t2− r2 ' r2/(2t), (2.1)

wheret, r, and∆ are all measured in the radiation length [5, 6].

We carried MC simulations of gamma-ray shower, in the air of uniform density with the radi-
ation lengthX0 of 308 m and the critical energyε of 81 MeV, with the incident energyW0 = 104ε
of primary gamma-ray and the threshold energy of10−1ε (called as G41 series, hereafter). We plot
MC shower electrons in Fig.3 at the penetration depthst of 5, 10, 15, and 20 with the horizontal
and the vertical coordinates of (r2,∆), where the crowded rates of the plots toward the horizontal
direction and the vertical direction become proportional to the areal densitydn/(πdr2) and the
delay densitydn/d∆ of electrons. We draw the geometrical front by the solid line, upward from
which electrons locate in the figure.

When we fix the square of the radial distancer2, we see the density of electrons increases very
rapidly upward after the geometrical front, it reaches to some peak, and it decreases slowly with
the increase of∆. On the contrary when we fix the delay∆, the density shows almost constant
near the shower axis (r2 ¿ 1) and it decreases slowly with the increase ofr2 up to the geometrical
front. To confirm this character precise, we convert Fig.3 to Fig. 4 by plotting the electrons with
the coordinates of (r2/(2t∆),∆), with the horizontal coordinate normalized by the square of the
radius of the geometrical front2t∆. Then we find in Fig.4 the density of shower electrons falls
almost similarly with the delay∆ of vertical coordinate irrespective of the horizontal coordinate of
r2/2t∆, though with∆ fixed the density keeps almost constant near the shower axis (r2/2t∆ ¿ 1)
and decreases very rapidly just before reaching to the geometrical front (r2/2t∆→ 1). We analyze
disc structures of gamma-ray shower, mainly according to these characters.
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Figure 1: The geometrical front of shower elec-
trons at the penetrating depth oft. The geomet-
rical front shows trivial delay of∆' r2/(2t) at r
from the tangential plane at the shower front.
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Figure 2: Theu-weighted probability densities,
udP/du, for the delayu≡ 2ε2∆/E2

s at t = 5, 10,
15, and 20.

3. The structure functions of shower electrons

Based on the investigations in the last section, we assume the infinitesimal probabilityd2ρ of
the shower electrons to delay∆ and to spread~r from the shower axis as

d2ρ =
dP(∆; t)

d∆
d∆

dQ(r;∆)
d~r

2πrdr, (3.1)

wheredP(∆; t)/d∆ denotes the probability density to delay∆ with the radial spread~r integrated
(the longitudinal distribution) anddQ(r;∆)/d~r denotes the probability density for the spread~r with
the delay∆ fixed. So that the densities denoted as the "structure functions" are normalized as

∫ ∞

0

dP(∆; t)
d∆

d∆ = 1,
∫ ∞

0

dQ(r;∆)
d~r

2πrdr = 1, and
∫ ∞

0

∫ ∞

0

d2ρ
d∆d~r

d∆2πrdr = 1. (3.2)

3.1 The longitudinal distribution dP(∆; t)/d∆ of shower electrons

We derive the probability density of shower electrons to delay∆, by analyzing MC showers
of G41 series att = 5, 10, 15, and 20 cu with the radial spreadr integrated. We introduced a new
variable

u≡ 2∆/r2
M with (3.3)

rM ≡ Es/ε (3.4)

of the Molière unit [6], and investigated the probability of electrons in 100 MC showers to fall into
80 bins ofu, equally divided logarithmically from10−6 to 102. Theu-weighted probability density
udP/du is indicated in Fig.2 (dots).

In some analyses, theΓ distribution of(an+1/Γ(n+1))tne−atdt was assumed as a probability
of the delayt for cascade-shower particles [7, 8]. TheΓ distribution can reproduce the probability
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Figure 3: Scatter plot of electron
tracks indicating∆ vs r2 at t = 5, 10,
15, and 20, from top to bottom.
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Figure 4: Scatter plot of electron
tracks indicating∆ vs r2/(2t∆) at t =
5, 10, 15, and 20, from top to bottom.

derived by MC in the early-stage of shower-development, though it falls too rapid in the tail-
stage as analyzed in all-charged-particles investigations [8] and cannot reproduce the MC results
of power-law decrease. So that, we assume the probability density as a Beta distribution of

dP=
dP(∆; t)

d∆
d∆≡ dP(u; t)

du
du=

1
B(a,b)

ua−1(1+u)−a−bdu (3.5)
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with B(a,b) = Γ(a)Γ(b)/Γ(a+b) of Beta function. Then they satisfy

〈u〉=
a

b−1
, 〈u2〉=

a+1
b−2

〈u〉, thus b = 2+
〈u〉+1

〈u2〉−〈u〉2〈u〉, a = (b−1)〈u〉. (3.6)

We show in Table 1 the values ofa andb derived from 100 MC showers of G41 series, and show
the probability density of the delay from (3.5) in Fig. 2 (lines) applying thesea andb, which well
reproduced the density derived by MC.

3.2 The radial distribution dQ(r;∆)/d~r at fixed delays∆ of shower electrons

We investigate the(1− r2/2t∆)-weighted probability density of(1− r2/2t∆) in Fig. 5 (dots)
counting the shower electron to fall on the 100 bins of(1−r2/2t∆), equally divided logarithmically
from 0.1 to 1, for respective 9 ranges of∆ (distinguished by different 9 dots), equally divided
logarithmically from10−5.0 to 10−0.5. We express the probability density of(1− r2/2t∆) by the
power function of

dQ=
dQ

d(1− r2/2t∆)
d

(
1− r2

2t∆

)
= h

(
1− r2

2t∆

)h−1

d

(
1− r2

2t∆

)
, (3.7)

whereh is normalized as the total electron number to be 1. Then it satisfies
〈

1− r2

2t∆

〉
=

h
h+1

, thus h = 1/

{〈
1− r2

2t∆

〉−1

−1

}
. (3.8)

We drew the(1− r2/2t∆)-weighted probability densityh(1− r2/2t∆)h derived from Eq. (3.7) in
Fig. 5 (lines) applying the respectiveh at 9 ranges of∆ mentioned above derived from 100 MC
showers of G41 series, which well reproduced the MC results. We also found that the power index
of h does not depend on∆ when the number of electrons is much enough in the∆ range,

Thus we get the structure function for the probability density of radial spreadr at the fixed
delay∆. Introducing a new variable

v = r2/r2
M , (3.9)

we haver2/(2t∆) = v/(tu). Then Eq. (3.7) gives

dQ=
dQ

d(v/tu)
d
( v

tu

)
= h

(
1− v

tu

)h−1
d
( v

tu

)
with 0≤ v

tu
≤ 1, (3.10)

where it satisfies
〈 v

tu

〉
=

1
h+1

, thus h =
〈 v

tu

〉−1
−1. (3.11)

We show the power indexh evaluated from 100 MC showers in Table1. We drew the structure
function for the radial distribution with the delay fixed, or the(v/tu)-weighted probability densities
(v/tu)dρ/d(v/tu) determined in Eq. (3.10), in Fig. 6 (lines) with t separated by 5, 10, 15, and
20 and applying the value ofh in the Table. The derived structure functions well reproduce the
indicated radial distributions with the delay fixed (dots) appearing in the electrons in 100 MC
showers.
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Figure 5: 1−v/tu= 1− r2/2t∆ distribution at various∆ regions derived from electrons in 100 MC showers,
at t = 5, 10, 15, and 20.∆ is divided to 9 regions, [-5.0,-4.5], [-4.5,-4.0],· · ·, [-1.0,-0.5] in log10 values.
1−v/tu is distinguished in 100 bins from 0.1 to 1, equally divided logarithmically.

4. The shower-disc structure of electrons reproduced by the structure functions

4.1 Reproduction of the lateral distribution of the shower electrons

We derive the probability density ofv/t from 100 MC showers of G41 series, by counting the
shower electrons to fall on the 80 bins ofv/t, equally divided logarithmically from10−7 to 10. The
results are indicated in Fig.7 (dots) fort = 5, 10, 15, and 20, withv/t weighted.

On the other hand, we derive the lateral distribution from the assumed structure functions of
(3.5) and (3.10);

dρ = d
(v

t

)∫ ∞

v/t

dQ
d(v/tu)

dP(u; t)
du

du
u

=
hd(v/t)
B(a,b)

∫ ∞

v/t
ua−2(1+u)−a−b

(
1− v/t

u

)h−1

du. (4.1)

Thus the(v/t)-weighted probability density is expressed as

(v/t)dρ
d(v/t)

=
h(v/t)a

B(a,b)

∫ ∞

1

(
u

v/t

)a−2(
1+

v
t

u
v/t

)−a−b(
1− v/t

u

)h−1

d

(
u

v/t

)
. (4.2)

The results derived by numerical integrations are indicated in Fig.7 (lines), which well reproduced
the MC results fort = 5, 10, 15, and 20.

The central properties (v/t → 0) of the lateral distribution of (4.2) are described as

(v/t)dρ
d(v/t)

→ h(v/t)a

B(a,b)

∫ ∞

1

(
u

v/t

)a−2(
1− v/t

u

)h−1

d

(
u

v/t

)
=

h(v/t)a

B(a,b)
B(1−a,h). (4.3)

Table 1: Parametersa, b andh, derived from 100 MC showers.

t (CU) 5 10 15 20 25

a 0.28 0.50 0.69 0.83 1.02
b 2.81 2.76 2.62 2.54 2.66
h 8.59 9.46 9.19 9.65 8.92
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Figure 7: The radial distribution of shower elec-
trons expressed by(v/t)-weighted probability den-
sity for the normalized squared-radial-distance of
v/t ≡ (r2/r2

M)/t at t = 5, 10, 15, and 20.

We find the central power profiles of(v/t)a−1 of the lateral distribution well agree with the starting
power profiles ofua−1 atu→ 0 for the longitudinal distribution of (3.5).

4.2 Reproduction of the probability densities of delay at fixed radial distances

We count the shower electrons in 100 MC events to fall on the 60 bins of delayu≡ 2∆/r2
M ,

equally divided logarithmically from10−4 to 10, for respective 10 ranges of radial distance
√

v =
r/rM ' r/308m, equally divided from 0 to 1. Then we get the probability densitiesδ 2ρ/δ (v/t)/δu
for t = 5, 10, 15, and 20 by dividing the counts with the total number of electrons in the respective
ranges of

√
v, as indicated in Fig.8 (dots) withu weighted, separating the ranges ofv with the

respective symbols of dot.

On the other hand, we evaluate the infinitesimal probability of shower electronsdρ to fall on
the bin ofdu from the assumed structure functions of (3.5) and (3.10), for the respective finite
ranges ofδ (v/t)≡ [v0/t,v1/t];

dρ = du
∫ v1/tu

v0/tu

dP(u; t)
du

dQ
d(v/tu)

d
( v

tu

)
=

ua−1(1+u)−a−bdu
B(a,b)

∫ (v1/t)/u

(v0/t)/u
h

(
1− v/t

u

)h−1

d
v/t
u

. (4.4)

So that we can derive the respective averaged electron densities in the finite ranges ofδ (v/t) at the
averaged radial locations of(v0 +v1)/2/t;

u
d
du

δρ
δ (v/t)

=
ua(1+u)−a−b

B(a,b)

{(
1− v0/t

u

)h

−
(

1− v1/t
u

)h
}/v1−v0

t
. (4.5)

The results fort = 5, 10, 15, and 20 are drawn in Fig.8 (lines), which well reproduce the MC
results.
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Figure 8: The delayu≡ 2∆/r2
M distribution of shower electrons at fixed squared-radial-distances ofv≡

r2/r2
M , expressed byu-weighted probability densitiesuδ 2ρ/δ (v/t)/δu at t = 5, 10, 15, and 20.

5. Conclusions and discussions

From 100 MC gamma-ray showers of G41 series (W0 = 104ε andE > 10−1ε) in the uniform
air medium, we got the structure functions of gamma-ray showers which are the probability density
for the delay (1-dimensional) and the density for the lateral spread at fixed delays. We assumed
Beta distributions for the both densities with the parametersa, b, andh determined by MC showers
from the first and the second moments of the probability densities. We could reproduce the lateral
distribution and the delay distribution at fixed radial spreads, which well reproduced the distribu-
tions derived from MC showers. This investigation started from the discussions between one of the
authors (T.N.) and late John Linsley with mail, after La Jolla conference (1985).
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