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The upcoming Cherenkov Telescope Array (CTA) will dramatically improve the point-source
sensitivity compared to the current Imaging Atmospheric Cherenkov Telescopes (IACTs). One of
the key science projects of CTA will be a survey of the whole Galactic plane (GPS) using both
southern and northern observatories, specifically focusing on the inner galactic region. We extend
a deep learning-based image segmentation software pipeline (autosource-id) developed on Fermi-
LAT data to detect and classify extended sources for the simulated CTA GPS. Using updated
instrument response functions for CTA (Prod5), we test this pipeline on simulated gamma-ray
sources lying in the inner galactic region (specifically 0◦ < 𝑙 < 20◦, |𝑏 | < 3◦) for energies ranging
from 30 GeV to 100 TeV. Dividing the source extensions ranging from 0.03◦ to 1◦ in three different
classes, we find that using a simple and light convolutional neural network it is possible to achieve
a 97% global accuracy in separating the extended sources from the point-like sources. The neural
net architecture including other data pre-processing codes is available online.
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1. Introduction

The Cherenkov Telescope Array (CTA) is an upcoming ground-based gamma-ray observatory
that will comprise over 60 imaging atmospheric Cherenkov telescopes (IACTs) placed in both the
northern (CTA-North) and southern (CTA-South) hemispheres [1]. Its extensive telescope array
will deliver unparalleled sensitivity and imaging capabilities, providing a significant leap forward
in gamma-ray observation.

The upcoming surveys conducted by CTA are anticipated to achieve two orders of magnitude
deeper exposure than the currently performed surveys using IACTs [1]. This enhancement will be
attributed primarily to the observatory’s improved sensitivity and wider field of view (FoV). Sky
surveys hold an important position within CTA’s Key Science Projects, forming the fundamental
scientific program of the observatory. Consequently, dedicated observation time will be allocated
early on in CTA’s observation schedule to ensure their successful completion. CTA will perform
a Galactic plane survey (GPS) within the energy range of 20 GeV to 300 TeV, with unprecedented
depth, angular resolution, and spectral coverage, using both CTA-North and CTA-South arrays.

With a target (point-source) sensitivity of the GPS at the level of a few mCrab, CTA is expected
to detect a factor of 2-7 times as many astrophysical TeV sources as are in the current catalogs
[2]. In the construction of high and very-high-energy gamma-ray catalogs, a standard approach to
identifying new gamma-ray sources utilizes the likelihood analysis, in the form of either the classical
background subtraction techniques or a modern template-fitting approach. With the advancement of
state-of-the-art simulation techniques, supervised machine learning for point and extended source
detection represents a new approach to cataloging the sky, potentially improving the detection
sensitivity and computational effectivity achieved by likelihood-based techniques. The methods
presented in this work will be part of a detection pipeline utilizing deep-learning-based algorithms
to automatically detect and classify point sources from gamma-ray data [3, 4]1. The codes related
to the work presented in this proceedings paper can be accessed through a dedicated GitHub page2.

2. Data Preparation

2.1 Simulation Using CTOOLS

To simulate the GPS observations, we utilize the methodology outlined in [2]. The planned
observation schedule comprises an initial early-phase program that spans 480 hours of observation
time during the first two years and a long-term program with a total of 1140 hours allocated for
observations over the subsequent eight years. The planned pointing strategy for the GPS assumes
a double-row pattern. The observations are scheduled specifically during the dark time, ensuring
moonless nights for optimal conditions. Moreover, careful optimizations are implemented to
determine the minimal zenith angles for each observation, further enhancing the effectiveness of
the pointing strategy. The exposure of different regions of the Galactic plane will differ depending
on the expected number of sources and objects of interest in each region, and consequently, separate
regions will reach different point- and extended-source sensitivities. The Galactic plane is divided

1AutoSource-ID

2GitHub Link
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into five respective regions, with the Inner Galaxy planned to receive the most observation time and
with that the deepest exposure, due to being the most densely populated with sources.

Ground-based observatories predominantly detect events originating from extensive air show-
ers triggered by cosmic ray (CR) particles entering the Earth’s atmosphere. During the event
reconstruction process, some of these CR-induced events can be incorrectly identified as gamma
rays, constituting the CR background component. To model this CR component accurately, ex-
tensive Monte Carlo simulations are conducted to simulate CR air showers, capture the associated
Cherenkov radiation, and subsequently reconstruct the events. The IRF suite provides the rate and
distribution of misidentified CR events, which vary depending on observing conditions such as the
duration of observations and the zenith angle.

We have selected a specific set of Instrument Response Functions (IRFs) based on optimized
background cuts derived from Monte Carlo simulations assuming 50 hours of observations and
the appropriate zenith angles, as described in [2]. To simulate GPS observations, we utilize the
most recent Instrument Response Functions (IRF) provided by the CTA Observatory3, dubbed
prod5-v0.14. The IRFs correspond to the so-called “alpha” configuration of the CTA, consisting
of 4 Large- and 9 Middle-Sized Telescopes (STs) in the Northern site and 14 Middle- and 37 Small-
STs in the Southern site. Simulations and analyses were performed using the publicly available
gamma-ray analysis software ctools5.

We model the spatial component as an extended Gaussian source, with the extensions varying
between 0.03◦ and 1.0◦ following a log-uniform distribution. To model the source spectra, we have
used information from the GammaCat6 catalog consisting of 162 TeV sources within the Gammapy
[6] library to obtain the distribution of the parameters by selecting the sources with well-defined
spectral models (75 sources) and the corresponding distributions are shown in Fig. 1. We assume
a simple power-law spectral distribution 𝑑𝑁

𝑑𝐸
= 𝐾0

(
𝐸
𝐸0

)−𝛾
and for the pivot energy (𝐸0), we set a

fixed value of 1 TeV. For the spectral index (𝛾) we chose a normal distribution with the mean and
the standard deviation (SD) of (2.2, 0.1), replicating the distribution of most of those TeV sources.
We model the flux normalization (𝐾0) as 10𝑝 TeV−1cm−2s−1 with the exponents 𝑝 following a
normal distribution with the mean and the SD of (-12, 0.8). For simulating the 𝛾-ray sources using
ctools, we choose a sky region close to the galactic plane, specifically 0◦ < 𝑙 < 20◦ and |𝑏 | < 3◦.
The simulation of source observations is performed for energies ranging from 30 GeV to 100 TeV,
binned in 60 logarithmically-spaced energy bins, and using a 0.02◦ × 0.02◦ spatial binning over
a 1.4◦ × 1.4◦ region of interest (RoI). Before performing the analysis of classifying these sources
based on their extension, we group the energy bins into four wider energy bands covering energies
in the range of [0.03, 0.1] TeV, [0.1, 1.0] TeV, [1.0, 10.0] TeV, and [10.0, 100.0] TeV.

2.2 Image Data Pre-Processing

The obtained fits files contain an array of photon counts from 30 GeV to 100 TeV in 4 energy
bands with dimensions (4, 70, 70), with the last two dimensions corresponding to the number of
spatial pixels over a selected RoI. The photon counts in each of the fits files represent the expected

3See http://www.cta-observatory.org/science/cta-performance/ for more details.
4The IRF files are publicly available at [5].
5http://cta.irap.omp.eu/ctools/

6https://gamma-cat.readthedocs.io/
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Figure 1: Distribution of parameters of the TeV gamma-ray sources with well-defined spectral models taken
from GammaCat.

Figure 2: Example Poisson images generated using ctools at 4 different energy bands including the CR
background and a source. All images are of fixed height and width with dimensions (70, 70).

counts when one would average over infinitely many Poisson realizations. To account for the
Poisson statistics of the real data, we a-posteriori apply Poisson noise to each pixel in the arrays.
An example image of a 𝛾-ray source including only instrumental background and the added Poisson
noise is shown in 4 different energy bands in Fig. 2.

For segregating the source classes based on their corresponding extensions (𝜎), we divide our
dataset into 3 classes. For point-like sources (from now on ‘C0’) we choose 0.03◦ < 𝜎 < 0.1◦, and
for extended sources (from now on ‘C2’) we choose 𝜎 > 0.3. The remaining sources lay in the
range between 0.1◦ < 𝜎 < 0.3◦ (from now on ‘C1’). Two factors influenced this range selection:
i) for both, CTA-North and CTA-South arrays, the angular resolution3 reaches below 0.05◦ at the
highest energies (> 10 TeV) whereas the resolution at lower energies (∼ 100 GeV) is ∼ 0.2◦, ii)

4
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for our generated dataset, this selection also naturally leads to a balanced dataset in terms of the
number of images belonging to each extension class ‘C0’, ‘C1’, ‘C2’.

3. Neural-Net Architecture & Training

Convolutional Neural Networks (CNN) have been shown to perform well in classification tasks
based on source morphology like star-galaxy classification [7, 8]. Here we propose a multi-input
network (Fig. 3) for classifying the source population based on their extension. As shown in Fig. 2,
the Poisson images of a source in 4 different energy bands may appear very different and the main
reasons for this are, i) the CR background varies significantly from low energy regions (∼ 30GeV)
to the highest energies (∼ 100TeV), and ii) the Point-Spread-Function (PSF) of CTA7 decreases
with increasing energy.

To capture the information encoded at different energy bands, our network independently
analyzes the features from different bands. This information is then concatenated to pass through
convolutional and dense layers to the final softmax layer with 3 outputs, where the network predicts
the most probable extension (Fig. 3). The number of parameters in the network is just under
282k. The complete dataset consists of 1000 images of various extensions which are then split
into 65% training images, 20% validation images, and 15% test images. During training time,
we add augmentation by flipping the image arrays from right to left, up to down, and rotating
by 90◦. Although these new data points generated via augmentation are not i.i.d. (independent
and identically distributed), data augmentation stabilizes the training and has been shown to carry
implicit regularization that prevents overfitting [9, 10].

For training the network we used Adam Optimizer [11], where the hyperparameters are set
to default values (in TensorFlow) with the learning rate set to 10−4. We check several strategies
to achieve better performance, prevent overfitting and achieve stable training and validation loss.
To prevent overfitting, we implement early stopping, in particular, that the network stops further
training once the validation loss does not improve after 20 epochs. For achieving stable training
and validation loss, we navigate the loss landscape carefully by reducing the learning rate by a
factor of 0.8 if the learning stagnates, i.e. the validation loss doesn’t improve after 10 epochs.
The complete implementation is done using TensorFlow8[12] library. The training time, including
the data reading time (consisting of ∼ 850 images) and augmentation, takes around 15-20 minutes
using an NVIDIA GeForce GTX 1080, with 8GB GPU memory.

4. Results

After training the network, we selected and saved the best model based on the smallest loss
on the validation set. We then used this model to evaluate the performance of the network on the
test set. Before checking some of the common performance metrics, we visualized the activation
maps from the convolutional layer (conv4 in Fig. 3) for four different randomly selected filters. An
activation map corresponds to the activation of different parts of the image, which in turn helps us
to understand exactly which part of the input image the layer focuses on when looking for features.

7CTAO Performance
8https://www.tensorflow.org/
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Figure 3: A simplified version of our multi-input network is shown here for only 2 energy bands. The
convolutional blocks are shown in yellow (conv1, conv3, conv4), convolution with strides in light green
(conv2), pooling blocks are shown in brown, and the fully connected layers are shown in purple. The final
layer is the softmax layer.

We show the activation maps for two test images within the ‘C0’ and ‘C1’ classes in the top and
bottom panels of Fig. 4, respectively. One can clearly see that different filters focus on different
regions of the image and the zones of high and low activations are indeed in accordance with the
source extensions. This gives us insight into the way the network extracts the spatial features of
different source images to perform classification.

One of the most commonly used evaluation metrics for a classification algorithm is the ‘Confu-
sion Matrix’ (CM) in which each row of the matrix represents the instances in an actual class while
each column represents the instances in a predicted class, making it easier to visualize whether
the algorithm is confusing between classes. We show the CM for a random selection of test data
consisting of 52, 45, and 45 source images for the ‘C0’, ‘C1’ & ‘C2’ classes, respectively. In Fig.
5a, we see a clear separation between the point source class (‘C0’) and the extended source class
(‘C2’), with the misclassification between ‘C1’ and ‘C2’ sources limited to < 10%.

Complementary to the CM, we employ a very common dimensionality reduction technique,
T-distributed Stochastic Neighbour Embedding (TSNE) [13], to embed the high-dimensional data
for 2D visualization and understand the network’s performance. It converts similarities between
data points to joint probabilities over pairs of high-dimensional data and minimizes the Kullback-
Leibler divergence between the joint probabilities of the low-dimensional embedding and the
high-dimensional data. To implement TSNE within our network, we use the saved model (based on
the smallest validation loss) and use the output from the 32-dimensional dense layer (fc1 in Fig. 3).
Once fully trained, a deep layer like this dense layer should be enriched with features from different
source classes. This high-dimensional data is then transformed into a 2D map via TSNE and the
result is shown in Fig. 5b. The TSNE visualization reveals a distinct separation between the ‘C0’

6
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Figure 4: We show the network activations from a convolutional layer (conv4 in fig. 3) for four randomly
selected filters for a ‘C0’ and a ‘C1’ source in the top and bottom panel respectively. Depending on the
extensions, we see similar parts of the images in different filters are activated.

and ‘C2’ sources, with an overlap between ‘C1’ and ‘C2’ sources, complementing the finding that
we show in the CM in Fig. 5a.

5. Conclusions

In this work, we have explored the possibility of classifying the VHE sources with various
extensions, assuming observations with the full CTA, utilizing a CNN. We use source spectra similar
to the spectra of the TeV sources from the GammaCat catalog, the latest CTA IRFs, and publicly
available software tools ctools to simulate VHE source observations, including the instrumental
background. We achieved ∼ 97% global accuracy in classifying different source extensions into
3 categories using a simple CNN with a training time of ∼ 20 minutes and less than 900 training
images.

With the upcoming CTA’s GPS potentially increasing the number of detected VHE sources by a
factor of five, we are building our current method to be a part of a full data-analysis pipeline for VHE
sources, including source detection, extension classification, and flux prediction with uncertainties.
In this work, we show the prospects of using a deep CNN for classifying a source based on its
spatial extension but recognize that the complexity of the task will increase with the inclusion of a
simulated full Galactic source population in our analysis, which is the study we intend to pursue in
the upcoming works.
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