Mega ALPACA to explore multi-PeV gamma-ray sky in the southern hemisphere

T. Sakoa,* for the ALPACA collaboration

aInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan.

E-mail: sako@icrr.u-tokyo.ac.jp

To explore the southern gamma-ray sky in the sub-PeV region ALPACA is now under construction near the Chacaltaya mountain in Bolivia. ALPACA is expected to discover various sub-PeV emitters, which are accelerating hadrons beyond PeV energy. To determine the maximum acceleration energy in the galaxy, a square kilometer (a Mega square meters) air shower array, Mega ALPACA is discussed as a next generation observatory. With high-statistics observations not only the highest energy object, but also distribution of diffuse gamma rays, nearby active galaxies and space weather are also in the main scope of Mega ALPACA. Design and possible scientific potentials of Mega ALPACA are presented.
1. Introduction

Since the discovery of sub-PeV (>100 TeV) gamma-ray emission from the Crab nebula by the Tibet ASγ collaboration in 2019 [1], gamma-ray astronomy entered in a new era. HAWC [2] and LHAASO [3] also report very-high-energy emissions from a variety of sources and revealed this energy range has rich astrophysical information. One of the most important topics in this energy region is to find the origin of the galactic cosmic rays where the protons are accelerated up to the energy of knee, a few PeV. Some objects such as the Cygnus region [4] and SNR G106.3+2.7 [5] are proposed as possible cosmic accelerators but the total energy released from these candidates is not sufficient to explain the energy density of cosmic rays observed at the solar system. To understand the total energy budget of the cosmic rays in our galaxy, the sub-PeV observations in the southern hemisphere is essential.

As the first southern sub-PeV observatory the Andes Large area PArticle detector for Cosmic ray physics and Astronomy (ALPACA) is under construction near the Chacartaya mountain in Bolivia [6]. ALPACA will cover the 82,800 m2 surface area with 3,600 m2 underground muon detectors. A prototype array of ALPACA called ALPAQUITA [7] started its operation of the ground detectors [8] and will start a construction of the underground muon detectors soon.

This paper describes a possible future plan of ALPACA called Mega ALPACA to expand the area up to Mega square meter (1 km2).

2. Mega ALPACA

2.1 Mega ALPACA design

The design of Mega ALPACA is shown in Fig.1 compared with the ALPACA array drawn at the center. The 1 km2 surface area is covered by about 1,000 scintillation counters where each counter has 1 m2 area. Gray hatched areas in the figure indicate the location of the underground muon detectors. The muon detectors are water Cherenkov detectors constructed as reinforced concrete structure with 2 m soil overburden. By detecting particles penetrating to the muon detectors, they are predominantly muons, gamma-ray initiated showers are discriminated from the dominant hadronic showers. The basic idea is same as the Tibet AS+MD array and ALPACA.

2.2 Source sensitivity

The flux sensitivity of Mega ALPACA is shown in Fig.2. Two red curves are the 5σ sensitivities for point-like sources after 1 and 10 years observations. Comparing with the 1 yr sensitivity of ALPACA shown by the thick black curve, one order of magnitude better sensitivity can be achieved above 100 TeV. The thin lines are the energy spectra of known sources based on the H.E.S.S. galactic plane survey [9] within the field of view of Mega ALPACA. The solid lines are the best fit spectra in the measured energy range while the dashed lines are the extrapolations. Half of the known sources are studied at 100 TeV with ALPACA but almost all sources are within the reach of the Mega ALPACA sensitivity. It is also remarkable that the sensitivity is extended even beyond PeV for almost sources. This enables us not only to discover multiple PeV emitters, but also to determine the cutoff energy of individual source if it is in the 100-1,000 TeV range.
2.3 Galactic diffuse gamma rays

The detection of the galactic diffuse gamma rays by the Tibet ASγ collaboration in 2021 [10] is one of the highlights in this field. The detected flux was reasonably explained by the theoretical model and it is recently supported by the observation of the diffuse neutrino flux by the IceCube collaboration [11]. The gamma-ray observation in the southern hemisphere is also important to know the density variation of cosmic rays in our galaxy. The expected gamma-ray fluxes have stronger model dependence than the flux predictions in the northern hemisphere [12]. Figure 3 shows the 1 yr sensitivity of Mega ALPACA for the galactic diffuse emission as a function of the galactic longitude. Depending on the cosmic-ray density model the flux significantly differs and Mega ALPACA can clearly verify the models. Not only detecting the diffuse gamma rays, Mega ALPACA enables the study of spatial distribution of galactic cosmic rays.

2.4 Extragalactic astronomy

It is well known that the photons above 100 TeV meet a strong absorption due to the interaction with ambient photons in the interstellar or intergalactic space. The attenuation peaks at PeV and the horizon is limited to about 10 kpc. Beyond PeV the flux slowly recovers but the power law nature of the source spectrum makes the detection of extragalactic sources difficult. Only nearby sources with hard spectra are possible candidates. As shown in Fig.4, the recently measured spectrum of Centaurus A by Femi LAT and H.E.S.S. [13] [14] can be extrapolated to the 100 TeV range. If
Figure 2: Sensitivities of Mega ALPACA for 1 year and 10 years observation periods (red thick curves) compared to the 1 yr sensitivity of ALPACA (black thick curve. Various thin curves are the fluxes of known gamma-ray sources within the field of view of Mega ALPACA. The solid lines are the measured fluxes while the dashed lines are the extrapolations of the fitting.

Figure 3: The 1 year sensitivity of Mega ALPACA for the galactic diffuse gamma-ray emission with respect to the two cosmic-ray density models [12]. The vertical axis is the relative flux to the flux at the anti-galactic center.
the spectrum is hard enough, gamma-rays can be detected by Mega ALPACA after a few years of operation.

3. Summary

ALPACA will start exploring the southern sub-PeV sky soon. As a next generation observatory, Mega ALPACA is a promising and robust idea to extend the sensitivity. In the southern hemisphere SWGO is also proposed as a 1 km2 scale air shower array using the water Cherenkov tanks [15]. To construct a cost effective array the best mix of scintillation detectors and water Cherenkov tanks is worth investigating.

Acknowledgements

The ALPACA project is supported by the Japan Society for the Promotion of Science (JSPS) through Grants-in-Aid for Scientific Research (A) 19H00678, Scientific Research (B) 19H01922, Scientific Research (B) 20H01920, Scientific Research (S) 20H05640, Scientific Research (B) 20H01234, Scientific Research (B) 22H01234, Scientific Research (C) 22K03660 and Specially Promoted Research 22H04912, the LeoAtrox supercomputer located at the facilities of the Centro de Análisis de Datos (CADS), CGSAIT, Universidad de Guadalajara, México, and by the joint research program of the Institute for Cosmic Ray Research (ICRR), The University of Tokyo. Y. Katayose is also supported by JSPS Open Partnership joint Research projects F2018, F2019. K. Kawata is supported by the Toray Science Foundation. E. de la Fuente thanks financial support from Inter-University Research Program of the Institute for Cosmic Ray Research, The University of Tokyo, grant 2023i-F-005. I. Toledano-Juarez acknowledges support from CONACyT, México; grant 754851.
References

Full Authors List: the ALPACA Collaboration

M. Anzorena\(^1\), D. Blanco\(^2\), E. de la Fuente\(^3,4\), K. Goto\(^5\), Y. Hayashi\(^6\), K. Hibino\(^7\), N. Hotta\(^8\), A. Jimenez-Meza\(^9\), Y. Katayose\(^10\), C. Kato\(^6\), S. Kato\(^1\), I. Kawahara\(^10\), T. Kawashima\(^1\), K. Kawata\(^1\), T. Koi\(^11\), H. Kojima\(^12,13\), T. Makishima\(^10\), Y. Masuda\(^6\), S. Matsuhashi\(^10\), M. Matsumoto\(^6\), R. Mayta\(^13,14\), P. Miranda\(^2\), A. Mizuno\(^1\), K. Munakata\(^6\), Y. Nakamura\(^1\), C. Nina\(^2\), M. Nishizawa\(^15\), R. Noguchi\(^10\), S. Ogio\(^1\), M. Ohnishi\(^1\), S. Okukawa\(^10\), A. Oshima\(^5,11\), M. Raljevich\(^2\), T. Saito\(^16\), T. Sako\(^1\), T. K. Sako\(^1\), J. Salinas\(^2\), T. Sasaki\(^7\), T. Shibasaki\(^17\), S. Shibata\(^12\), A. Shiomi\(^17\), M. A. Subieta Vasquez\(^2\), N. Tajima\(^18\), W. Takano\(^7\), M. Takita\(^4\), Y. Tameda\(^19\), K. Tanaka\(^20\), R. Ticona\(^2\), I. Toledano-Juarez\(^21,22\), H. Tsuchiya\(^23\), Y. Tsubesada\(^13,14\), S. Udo\(^7\), R. Usui\(^10\), R. I. Winkelmann\(^2\), K. Yamazaki\(^11\) and Y. Yokoe\(^1\)

1Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan.
2Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz 8635, Bolivia.
3Departamento de Física, CUCEI, Universidad de Guadalajara, Guadalajara, México.
4Doctorado en Tecnologías de la Información, CUCEA, Universidad de Guadalajara, Zapopan, México.
5College of Engineering, Chubu University, Kasugai 487-8501, Japan.
6Department of Physics, Shinshu University, Matsumoto 390-8621, Japan.
7Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan.
8Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan.
9Departamento de Tecnologías de la Información, CUCEA, Universidad de Guadalajara, Zapopan, México.
10Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
11College of Science and Engineering, Chubu University, Kasugai 487-8501, Japan.
12Chubu Innovative Astronomical Observatory, Chubu University, Kasugai 487-8501, Japan.
13Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan.
14Nambu Yoichiro Institute for Theoretical and Experimental Physics, Osaka Metropolitan University, Osaka 558-8585, Japan.
15National Institute of Informatics, Tokyo 101-8430, Japan.
16Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan.
17College of Industrial Technology, Nihon University, Narashino 275-8575, Japan.
18RIKEN, Wako 351-0198, Japan.
19Faculty of Engineering, Osaka Electro-Communication University, Neyagawa 572-8530, Japan.
20Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194, Japan.
21Doctorado en Ciencias Físicas, CUCEI, Universidad de Guadalajara, Guadalajara, México.
22Maestría en Ciencia de Datos, Departamento de Métodos Cuantitativos, CUCEA, Universidad de Guadalajara, Zapopan, México.